These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 8769773)
1. Shear stress is not sufficient to control growth of vascular networks: a model study. Hacking WJ; VanBavel E; Spaan JA Am J Physiol; 1996 Jan; 270(1 Pt 2):H364-75. PubMed ID: 8769773 [TBL] [Abstract][Full Text] [Related]
2. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Pries AR; Reglin B; Secomb TW Hypertension; 2005 Oct; 46(4):725-31. PubMed ID: 16172421 [TBL] [Abstract][Full Text] [Related]
3. Role of endothelium sensitivity to shear stress in noradrenaline-induced constriction of feline femoral arterial bed under constant flow and constant pressure perfusions. Kartamyshev SP; Balashov SA; Melkumyants AM J Vasc Res; 2007; 44(1):1-10. PubMed ID: 17148940 [TBL] [Abstract][Full Text] [Related]
4. Structural adaptation of microvascular networks and development of hypertension. Pries AR; Secomb TW Microcirculation; 2002; 9(4):305-14. PubMed ID: 12152106 [TBL] [Abstract][Full Text] [Related]
6. Control of blood vessel structure: insights from theoretical models. Pries AR; Secomb TW Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1010-5. PubMed ID: 15706037 [TBL] [Abstract][Full Text] [Related]
7. The role of wall shear stress in microvascular network adaptation. Hudetz AG; Kiani MF Adv Exp Med Biol; 1992; 316():31-9. PubMed ID: 1288092 [TBL] [Abstract][Full Text] [Related]
8. Structural autoregulation of terminal vascular beds: vascular adaptation and development of hypertension. Pries AR; Secomb TW; Gaehtgens P Hypertension; 1999 Jan; 33(1):153-61. PubMed ID: 9931096 [TBL] [Abstract][Full Text] [Related]
9. Development of a general method for designing microvascular networks using distribution of wall shear stress. Sayed Razavi M; Shirani E J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174 [TBL] [Abstract][Full Text] [Related]
10. Structural adaptation and stability of microvascular networks: theory and simulations. Pries AR; Secomb TW; Gaehtgens P Am J Physiol; 1998 Aug; 275(2):H349-60. PubMed ID: 9683420 [TBL] [Abstract][Full Text] [Related]
11. Effects of shear forces and pressure on blood vessel function and metabolism in a perfusion bioreactor. Hoenicka M; Wiedemann L; Puehler T; Hirt S; Birnbaum DE; Schmid C Ann Biomed Eng; 2010 Dec; 38(12):3706-23. PubMed ID: 20614243 [TBL] [Abstract][Full Text] [Related]
12. Branching exponent heterogeneity and wall shear stress distribution in vascular trees. Karau KL; Krenz GS; Dawson CA Am J Physiol Heart Circ Physiol; 2001 Mar; 280(3):H1256-63. PubMed ID: 11179071 [TBL] [Abstract][Full Text] [Related]
13. Intussusceptive angiogenesis: pillars against the blood flow. Styp-Rekowska B; Hlushchuk R; Pries AR; Djonov V Acta Physiol (Oxf); 2011 Jul; 202(3):213-23. PubMed ID: 21535415 [TBL] [Abstract][Full Text] [Related]
14. On the preservation of vessel bifurcations during flow-mediated angiogenic remodelling. Edgar LT; Franco CA; Gerhardt H; Bernabeu MO PLoS Comput Biol; 2021 Feb; 17(2):e1007715. PubMed ID: 33539345 [TBL] [Abstract][Full Text] [Related]
15. Structural adaptation of vascular networks: role of the pressure response. Pries AR; Reglin B; Secomb TW Hypertension; 2001 Dec; 38(6):1476-9. PubMed ID: 11751739 [TBL] [Abstract][Full Text] [Related]
16. Angiogenesis and vascular remodelling in normal and cancerous tissues. Owen MR; Alarcón T; Maini PK; Byrne HM J Math Biol; 2009 Apr; 58(4-5):689-721. PubMed ID: 18941752 [TBL] [Abstract][Full Text] [Related]
17. Vasoconstriction increases pulmonary nitric oxide synthesis and circulating cyclic GMP. Wilson PS; Thompson WJ; Moore TM; Khimenko PL; Taylor AE J Surg Res; 1997 Jun; 70(1):75-83. PubMed ID: 9228932 [TBL] [Abstract][Full Text] [Related]
18. Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks. Damiri HS; Bardaweel HK Lab Chip; 2015 Nov; 15(21):4187-96. PubMed ID: 26351133 [TBL] [Abstract][Full Text] [Related]
19. Control of vessel diameters mediated by flow-induced outward vascular remodeling in vitro. Sano H; Watanabe M; Yamashita T; Tanishita K; Sudo R Biofabrication; 2020 Jul; 12(4):045008. PubMed ID: 32644945 [TBL] [Abstract][Full Text] [Related]
20. Effect of diameter variability along a microvessel segment on pressure drop. Kiani MF; Cokelet GR; Sarelius IH Microvasc Res; 1993 May; 45(3):219-32. PubMed ID: 8321139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]