These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 8769783)

  • 1. Homeostatic sleep regulation in habitual short sleepers and long sleepers.
    Aeschbach D; Cajochen C; Landolt H; Borbély AA
    Am J Physiol; 1996 Jan; 270(1 Pt 2):R41-53. PubMed ID: 8769783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence from the waking electroencephalogram that short sleepers live under higher homeostatic sleep pressure than long sleepers.
    Aeschbach D; Postolache TT; Sher L; Matthews JR; Jackson MA; Wehr TA
    Neuroscience; 2001; 102(3):493-502. PubMed ID: 11226688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis.
    Martinez-Gonzalez D; Lesku JA; Rattenborg NC
    J Sleep Res; 2008 Jun; 17(2):140-53. PubMed ID: 18321247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The time course of slow wave sleep and REM sleep in habitual long and short sleepers: effect of prior wakefulness.
    Benoit O; Foret J; Bouard G
    Hum Neurobiol; 1983; 2(2):91-6. PubMed ID: 6629878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrelations and circadian changes of electroencephalogram frequencies under baseline conditions and constant sleep pressure in the rat.
    Yasenkov R; Deboer T
    Neuroscience; 2011 Apr; 180():212-21. PubMed ID: 21303684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of the sleep EEG after an early evening nap: experimental data and simulations.
    Werth E; Dijk DJ; Achermann P; Borbély AA
    Am J Physiol; 1996 Sep; 271(3 Pt 2):R501-10. PubMed ID: 8853369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time course of EEG power density during long sleep in humans.
    Dijk DJ; Brunner DP; Borbély AA
    Am J Physiol; 1990 Mar; 258(3 Pt 2):R650-61. PubMed ID: 2316712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep.
    Marzano C; Ferrara M; Curcio G; De Gennaro L
    J Sleep Res; 2010 Jun; 19(2):260-8. PubMed ID: 19845849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleep homeostasis in the rat: simulation of the time course of EEG slow-wave activity.
    Franken P; Tobler I; Borbély AA
    Neurosci Lett; 1991 Sep; 130(2):141-4. PubMed ID: 1795873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep deprivation suppresses the increase of rapid eye movement density across sleep cycles.
    Marzano C; De Simoni E; Tempesta D; Ferrara M; De Gennaro L
    J Sleep Res; 2011 Sep; 20(3):386-94. PubMed ID: 20819146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of partial sleep deprivation on sleep stages and EEG power spectra: evidence for non-REM and REM sleep homeostasis.
    Brunner DP; Dijk DJ; Tobler I; Borbély AA
    Electroencephalogr Clin Neurophysiol; 1990 Jun; 75(6):492-9. PubMed ID: 1693894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations.
    Achermann P; Dijk DJ; Brunner DP; Borbély AA
    Brain Res Bull; 1993; 31(1-2):97-113. PubMed ID: 8453498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homeostatic behavior of fast Fourier transform power in very low frequency non-rapid eye movement human electroencephalogram.
    Campbell IG; Higgins LM; Darchia N; Feinberg I
    Neuroscience; 2006 Jul; 140(4):1395-9. PubMed ID: 16631313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response to chronic sleep restriction, extension, and subsequent total sleep deprivation in humans: adaptation or preserved sleep homeostasis?
    Skorucak J; Arbon EL; Dijk DJ; Achermann P
    Sleep; 2018 Jul; 41(7):. PubMed ID: 29722893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep homeostasis in the rat in the light and dark period.
    Vyazovskiy VV; Achermann P; Tobler I
    Brain Res Bull; 2007 Sep; 74(1-3):37-44. PubMed ID: 17683787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep homeostasis and models of sleep regulation.
    Borbély AA; Achermann P
    J Biol Rhythms; 1999 Dec; 14(6):557-68. PubMed ID: 10643753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower number of K-complexes and K-alphas in sleep bruxism: a controlled quantitative study.
    Lavigne GJ; Rompré PH; Guitard F; Sessle BJ; Kato T; Montplaisir JY
    Clin Neurophysiol; 2002 May; 113(5):686-93. PubMed ID: 11976048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theta activity in the waking EEG is a marker of sleep propensity in the rat.
    Vyazovskiy VV; Tobler I
    Brain Res; 2005 Jul; 1050(1-2):64-71. PubMed ID: 15975563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waking and sleep electroencephalogram variables as human sleep homeostatic process biomarkers after drug administration.
    Giménez S; Romero S; Mañanas MA; Barbanoj MJ
    Neuropsychobiology; 2011; 63(4):252-60. PubMed ID: 21494053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep and sleep homeostasis in constant darkness in the rat.
    Deboer T
    J Sleep Res; 2009 Sep; 18(3):357-64. PubMed ID: 19552704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.