BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 8769828)

  • 1. Nitric oxide stimulates guanylate cyclase and regulates sodium transport in rabbit proximal tubule.
    Roczniak A; Burns KD
    Am J Physiol; 1996 Jan; 270(1 Pt 2):F106-15. PubMed ID: 8769828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide regulates HCO3- and Na+ transport by a cGMP-mediated mechanism in the kidney proximal tubule.
    Wang T
    Am J Physiol; 1997 Feb; 272(2 Pt 2):F242-8. PubMed ID: 9124402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and role of extracellular guanosine cyclic 3', 5' monophosphate in sodium uptake in human proximal tubule cells.
    Sasaki S; Siragy HM; Gildea JJ; Felder RA; Carey RM
    Hypertension; 2004 Feb; 43(2):286-91. PubMed ID: 14718358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of cyclic guanylate monophosphate in nitric oxide-induced injury to rat small intestinal epithelial cells.
    Tepperman BL; Abrahamson TD; Soper BD
    J Pharmacol Exp Ther; 1998 Mar; 284(3):929-33. PubMed ID: 9495851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of cGMP by soluble and particulate guanylyl cyclases in cultured human airway smooth muscle.
    Hamad AM; Range S; Holland E; Knox AJ
    Am J Physiol; 1997 Oct; 273(4):L807-13. PubMed ID: 9357856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of NHE3 by nitric oxide in Caco-2 cells.
    Gill RK; Saksena S; Syed IA; Tyagi S; Alrefai WA; Malakooti J; Ramaswamy K; Dudeja PK
    Am J Physiol Gastrointest Liver Physiol; 2002 Sep; 283(3):G747-56. PubMed ID: 12181191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of nitric oxide-dependent relaxation of pig tracheal smooth muscle by inhibitors of guanylyl cyclase and calcium activated potassium channels.
    Kannan MS; Johnson DE
    Life Sci; 1995; 56(25):2229-38. PubMed ID: 7540707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide donors inhibit spontaneous depolarizations by L-type Ca2+ currents in alveolar epithelial cells.
    Schobersberger W; Friedrich F; Hoffmann G; Völkl H; Dietl P
    Am J Physiol; 1997 Jun; 272(6 Pt 1):L1092-7. PubMed ID: 9227509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin increases NO-stimulated guanylate cyclase activity in cultured VSMC while raising redox potential.
    Kahn AM; Allen JC; Seidel CL; Lichtenberg DS; Song T; Zhang S
    Am J Physiol Endocrinol Metab; 2000 Apr; 278(4):E627-33. PubMed ID: 10751195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide induces transient Ca2+ changes in endothelial cells independent of cGMP.
    Volk T; Mäding K; Hensel M; Kox WJ
    J Cell Physiol; 1997 Sep; 172(3):296-305. PubMed ID: 9284949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide donor SNAP induces apoptosis in smooth muscle cells through cGMP-independent mechanism.
    Nishio E; Fukushima K; Shiozaki M; Watanabe Y
    Biochem Biophys Res Commun; 1996 Apr; 221(1):163-8. PubMed ID: 8660329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal interstitial guanosine cyclic 3', 5'-monophosphate mediates pressure-natriuresis via protein kinase G.
    Jin XH; McGrath HE; Gildea JJ; Siragy HM; Felder RA; Carey RM
    Hypertension; 2004 May; 43(5):1133-9. PubMed ID: 15007031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional localization of soluble guanylate cyclase in turtle retina: modulation of cGMP by nitric oxide donors.
    Blute TA; Velasco P; Eldred WD
    Vis Neurosci; 1998; 15(3):485-98. PubMed ID: 9685201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between cyclic guanosine monophosphate accumulation and relaxation of canine trachealis induced by nitrovasodilators.
    Zhou HL; Torphy TJ
    J Pharmacol Exp Ther; 1991 Sep; 258(3):972-8. PubMed ID: 1679854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of an inwardly rectifying K+ channel by nitric oxide in cultured human proximal tubule cells.
    Nakamura K; Hirano J; Kubokawa M
    Am J Physiol Renal Physiol; 2004 Sep; 287(3):F411-7. PubMed ID: 15140759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Cl-/OH- exchange activity in Caco-2 cells by nitric oxide.
    Saksena S; Gill RK; Syed IA; Tyagi S; Alrefai WA; Ramaswamy K; Dudeja PK
    Am J Physiol Gastrointest Liver Physiol; 2002 Sep; 283(3):G626-33. PubMed ID: 12181176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NO inhibits Na+-K+-2Cl- cotransport via a cytochrome P-450-dependent pathway in renal epithelial cells (MMDD1).
    He H; Podymow T; Zimpelmann J; Burns KD
    Am J Physiol Renal Physiol; 2003 Jun; 284(6):F1235-44. PubMed ID: 12582005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual modulation of swelling-activated chloride current by NO and NO donors in rabbit portal vein myocytes.
    Ellershaw DC; Greenwood IA; Large WA
    J Physiol; 2000 Oct; 528 Pt 1(Pt 1):15-24. PubMed ID: 11018102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide-induced hyperpolarization stimulates low-conductance Na+ channel of rat CCD.
    Lu M; Giebisch G; Wang W
    Am J Physiol; 1997 Apr; 272(4 Pt 2):F498-504. PubMed ID: 9140051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nitric oxide on the cyclic guanosine monophosphate (cGMP) pathway during meiosis resumption in bovine oocytes.
    Schwarz KR; Pires PR; Mesquita LG; Chiaratti MR; Leal CL
    Theriogenology; 2014 Mar; 81(4):556-64. PubMed ID: 24331454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.