These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8769881)

  • 1. Effect of dopamine, dimethoxyphenylethylamine, papaverine, and related compounds on mitochondrial respiration and complex I activity.
    Morikawa N; Nakagawa-Hattori Y; Mizuno Y
    J Neurochem; 1996 Mar; 66(3):1174-81. PubMed ID: 8769881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurotoxic effects of papaverine, tetrahydropapaverine and dimethoxyphenylethylamine on dopaminergic neurons in ventral mesencephalic-striatal co-culture.
    Goto K; Mochizuki H; Hattori T; Nakamura N; Mizuno Y
    Brain Res; 1997 Apr; 754(1-2):260-8. PubMed ID: 9134983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of brain mitochondrial respiration by dopamine and its metabolites: implications for Parkinson's disease and catecholamine-associated diseases.
    Gluck MR; Zeevalk GD
    J Neurochem; 2004 Nov; 91(4):788-95. PubMed ID: 15525332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of mitochondrial respiration by 1,2,3,4-tetrahydroisoquinoline-like endogenous alkaloids in mouse brain.
    Suzuki K; Mizuno Y; Yoshida M
    Neurochem Res; 1990 Jul; 15(7):705-10. PubMed ID: 1975653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-like compounds on mitochondrial respiration.
    Suzuki K; Mizuno Y; Yoshida M
    Adv Neurol; 1990; 53():215-8. PubMed ID: 2122645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of various tetrahydroisoquinoline derivatives on mitochondrial respiration and the electron transfer complexes.
    Morikawa N; Naoi M; Maruyama W; Ohta S; Kotake Y; Kawai H; Niwa T; Dostert P; Mizuno Y
    J Neural Transm (Vienna); 1998; 105(6-7):677-88. PubMed ID: 9826110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain mitochondria catalyze the oxidation of 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxyli c acid (DHBT-1) to intermediates that irreversibly inhibit complex I and scavenge glutathione: potential relevance to the pathogenesis of Parkinson's disease.
    Li H; Shen XM; Dryhurst G
    J Neurochem; 1998 Nov; 71(5):2049-62. PubMed ID: 9798930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic inhibition of respiration in brain mitochondria by nitric oxide and dihydroxyphenylacetic acid (DOPAC). Implications for Parkinson's disease.
    Nunes C; Almeida L; Laranjinha J
    Neurochem Int; 2005 Aug; 47(3):173-82. PubMed ID: 15893407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of brain mitochondrial respiration by dopamine: involvement of H(2)O(2) and hydroxyl radicals but not glutathione-protein-mixed disulfides.
    Gluck M; Ehrhart J; Jayatilleke E; Zeevalk GD
    J Neurochem; 2002 Jul; 82(1):66-74. PubMed ID: 12091466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxyli c acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson's disease.
    Li H; Dryhurst G
    J Neurochem; 1997 Oct; 69(4):1530-41. PubMed ID: 9326282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of mitochondrial NADH-ubiquinone oxidoreductase activity and ATP synthesis by tetrahydroisoquinoline.
    Suzuki K; Mizuno Y; Yoshida M
    Neurosci Lett; 1988 Mar; 86(1):105-8. PubMed ID: 3129681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quinone dependent NADH dehydrogenation in mitochondria-like particles from Setaria digitata, a filarial parasite.
    Sivan VM; Raj RK
    Biochem Biophys Res Commun; 1992 Jul; 186(2):698-705. PubMed ID: 1497658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopaminergic neurotoxicity in vivo and inhibition of mitochondrial respiration in vitro by possible endogenous pyridinium-like substances.
    Sayre LM; Wang FJ; Arora PK; Riachi NJ; Harik SI; Hoppel CL
    J Neurochem; 1991 Dec; 57(6):2106-15. PubMed ID: 1940917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibitory effect of papaverine on respiration-dependent contracture of giunea pig tainia coli in high-K medium. II. Inhibition of mitochondrial respiration.
    Tsuda S; Urakawa N; Fukami J
    Jpn J Pharmacol; 1977 Dec; 27(6):845-53. PubMed ID: 204822
    [No Abstract]   [Full Text] [Related]  

  • 15. Dopaminergic neurotoxicity of 1-methyl-4-phenylpyridinium analogs in cultured neurons: relationship to the dopamine uptake system and inhibition of mitochondrial respiration.
    Saporito MS; Heikkila RE; Youngster SK; Nicklas WJ; Geller HM
    J Pharmacol Exp Ther; 1992 Mar; 260(3):1400-9. PubMed ID: 1312170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of mitochondrial NADH-ubiquinone oxidoreductase activity by 1-methyl-4-phenylpyridinium ion.
    Mizuno Y; Saitoh T; Sone N
    Biochem Biophys Res Commun; 1987 Feb; 143(1):294-9. PubMed ID: 3103619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson's disease.
    Khan FH; Sen T; Maiti AK; Jana S; Chatterjee U; Chakrabarti S
    Biochim Biophys Acta; 2005 Jun; 1741(1-2):65-74. PubMed ID: 15925494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of alpha-phenyl-N-tert-butyl nitrone and alternative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site.
    Hensley K; Pye QN; Maidt ML; Stewart CA; Robinson KA; Jaffrey F; Floyd RA
    J Neurochem; 1998 Dec; 71(6):2549-57. PubMed ID: 9832155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism.
    Benej M; Hong X; Vibhute S; Scott S; Wu J; Graves E; Le QT; Koong AC; Giaccia AJ; Yu B; Chen CS; Papandreou I; Denko NC
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10756-10761. PubMed ID: 30201710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of polarography to detect respiration defects in cell cultures.
    Hofhaus G; Shakeley RM; Attardi G
    Methods Enzymol; 1996; 264():476-83. PubMed ID: 8965720
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.