These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8769984)

  • 1. Intracellular ADP-ribose inhibits ATP-sensitive K+ channels in rat ventricular myocytes.
    Kwak YG; Park SK; Kim UH; Han MK; Eun JS; Cho KP; Chae SW
    Am J Physiol; 1996 Aug; 271(2 Pt 1):C464-8. PubMed ID: 8769984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinetics of cyclic ADP-ribose formation in heart muscle.
    Mészáros V; Socci R; Mészáros LG
    Biochem Biophys Res Commun; 1995 May; 210(2):452-6. PubMed ID: 7755621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cyclic ADP-ribose in ATP-activated potassium currents in alveolar macrophages.
    Ebihara S; Sasaki T; Hida W; Kikuchi Y; Oshiro T; Shimura S; Takasawa S; Okamoto H; Nishiyama A; Akaike N; Shirato K
    J Biol Chem; 1997 Jun; 272(25):16023-9. PubMed ID: 9188506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The regulation of ATP-sensitive K+ channel activity in intact and permeabilized rat ventricular myocytes.
    Nichols CG; Lederer WJ
    J Physiol; 1990 Apr; 423():91-110. PubMed ID: 2388163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes.
    Heiner I; Eisfeld J; Warnstedt M; Radukina N; Jüngling E; Lückhoff A
    Biochem J; 2006 Sep; 398(2):225-32. PubMed ID: 16719842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism and actions of ADP-riboses in coronary arterial smooth muscle.
    Li P; Zou AP; Campbell WB
    Adv Exp Med Biol; 1997; 419():437-41. PubMed ID: 9193686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-sensitive potassium channels are modulated by intracellular lactate in rabbit ventricular myocytes.
    Han J; So I; Kim EY; Earm YE
    Pflugers Arch; 1993 Dec; 425(5-6):546-8. PubMed ID: 8134271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic ADP-ribose does not regulate sarcoplasmic reticulum Ca2+ release in intact cardiac myocytes.
    Guo X; Laflamme MA; Becker PL
    Circ Res; 1996 Jul; 79(1):147-51. PubMed ID: 8925563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic ADP-ribose competes with ATP for the adenine nucleotide binding site on the cardiac ryanodine receptor Ca(2+)-release channel.
    Sitsapesan R; McGarry SJ; Williams AJ
    Circ Res; 1994 Sep; 75(3):596-600. PubMed ID: 8062431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of cADPR-Hydrolase by ADP-ribose potentiates cADPR synthesis from beta-NAD+.
    Genazzani AA; Bak J; Galione A
    Biochem Biophys Res Commun; 1996 Jun; 223(3):502-7. PubMed ID: 8687425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cADP ribose and [Ca(2+)](i) regulation in rat cardiac myocytes.
    Prakash YS; Kannan MS; Walseth TF; Sieck GC
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1482-9. PubMed ID: 11009432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel mechanisms involved in superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum linked to cyclic ADP-ribose stimulation.
    Kumasaka S; Shoji H; Okabe E
    Antioxid Redox Signal; 1999; 1(1):55-69. PubMed ID: 11225733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches.
    Lederer WJ; Nichols CG
    J Physiol; 1989 Dec; 419():193-211. PubMed ID: 2621629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of ATP-sensitive K+ channels in rabbit ventricular myocytes by adenosine A1 receptor activation.
    Kim E; Han J; Ho W; Earm YE
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H325-33. PubMed ID: 9038953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of ADP-ribose in 11,12-EET-induced activation of K(Ca) channels in coronary arterial smooth muscle cells.
    Li PL; Zhang DX; Ge ZD; Campbell WB
    Am J Physiol Heart Circ Physiol; 2002 Apr; 282(4):H1229-36. PubMed ID: 11893556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cocaine-induced inhibition of ATP-sensitive K+ channels in rat ventricular myocytes and in heart-derived H9c2 cells.
    Wu SN; Chang HD; Sung RJ
    Basic Clin Pharmacol Toxicol; 2006 May; 98(5):510-7. PubMed ID: 16635111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-sensitive potassium channels in neonatal and adult rabbit ventricular myocytes.
    Chen F; Wetzel GT; Friedman WF; Klitzner TS
    Pediatr Res; 1992 Aug; 32(2):230-5. PubMed ID: 1508616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HPLC analysis of cyclic adenosine diphosphate ribose and adenosine diphosphate ribose: determination of NAD+ metabolites in hippocampal membranes.
    Casabona G; Sturiale L; L'Episcopo MR; Raciti G; Fazzio A; Sarpietro MG; Genazzani AA; Cambria A; Nicoletti F
    Ital J Biochem; 1995; 44(5):258-68. PubMed ID: 8746510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of K+ channels by intracellular ATP in human neocortical neurons.
    Jiang C; Haddad GG
    J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of myocardial ATP-sensitive potassium channels by ketamine.
    Ko SH; Lee SK; Han YJ; Choe H; Kwak YG; Chae SW; Cho KP; Song HS
    Anesthesiology; 1997 Jul; 87(1):68-74. PubMed ID: 9232136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.