These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8770189)

  • 1. A Monte Carlo simulation study of protein-induced heat capacity changes and lipid-induced protein clustering.
    Heimburg T; Biltonen RL
    Biophys J; 1996 Jan; 70(1):84-96. PubMed ID: 8770189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of peripheral proteins to mixed lipid membranes: effect of lipid demixing upon binding.
    Heimburg T; Angerstein B; Marsh D
    Biophys J; 1999 May; 76(5):2575-86. PubMed ID: 10233072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of lipid mixtures: finding phase separation.
    Huang J; Feigenson GW
    Biophys J; 1993 Nov; 65(5):1788-94. PubMed ID: 8298012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid bilayer pre-transition as the beginning of the melting process.
    Riske KA; Barroso RP; Vequi-Suplicy CC; Germano R; Henriques VB; Lamy MT
    Biochim Biophys Acta; 2009 May; 1788(5):954-63. PubMed ID: 19366598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes.
    Heimburg T; Marsh D
    Biophys J; 1995 Feb; 68(2):536-46. PubMed ID: 7696507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion in two-component lipid membranes--a fluorescence correlation spectroscopy and monte carlo simulation study.
    Hac AE; Seeger HM; Fidorra M; Heimburg T
    Biophys J; 2005 Jan; 88(1):317-33. PubMed ID: 15501937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible charged macromolecules on mixed fluid lipid membranes: theory and Monte Carlo simulations.
    Tzlil S; Ben-Shaul A
    Biophys J; 2005 Nov; 89(5):2972-87. PubMed ID: 16126828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of secondary and tertiary structural changes of cytochrome c in complexes with anionic lipids using amide hydrogen exchange measurements: an FTIR study.
    Heimburg T; Marsh D
    Biophys J; 1993 Dec; 65(6):2408-17. PubMed ID: 8312479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing heat capacity profiles of peptide-containing membranes: cluster formation of gramicidin A.
    Ivanova VP; Makarov IM; Schäffer TE; Heimburg T
    Biophys J; 2003 Apr; 84(4):2427-39. PubMed ID: 12668450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid modulation of protein-induced membrane domains as a mechanism for controlling signal transduction.
    Hinderliter A; Biltonen RL; Almeida PF
    Biochemistry; 2004 Jun; 43(22):7102-10. PubMed ID: 15170347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition.
    Heimburg T
    Biophys J; 2000 Mar; 78(3):1154-65. PubMed ID: 10692305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General model for lipid-mediated two-dimensional array formation of membrane proteins: application to bacteriorhodopsin.
    Sabra MC; Uitdehaag JC; Watts A
    Biophys J; 1998 Sep; 75(3):1180-8. PubMed ID: 9726920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insertion and hairpin formation of membrane proteins: a Monte Carlo study.
    Baumgärtner A
    Biophys J; 1996 Sep; 71(3):1248-55. PubMed ID: 8873999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical thermodynamic analysis of peptide and protein insertion into lipid membranes.
    Ben-Shaul A; Ben-Tal N; Honig B
    Biophys J; 1996 Jul; 71(1):130-7. PubMed ID: 8804596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting and capillary condensation as means of protein organization in membranes.
    Gil T; Sabra MC; Ipsen JH; Mouritsen OG
    Biophys J; 1997 Oct; 73(4):1728-41. PubMed ID: 9336169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of the gel-fluid transition in a membrane composed of lipids with two connected acyl chains: application of a dimer-move step.
    Jerala R; Almeida PF; Biltonen RL
    Biophys J; 1996 Aug; 71(2):609-15. PubMed ID: 8842200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of kinetically irreversible protein aggregate structure.
    Patro SY; Przybycien TM
    Biophys J; 1994 May; 66(5):1274-89. PubMed ID: 8061184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of complexes formed in fully hydrated dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol.
    Quinn PJ; Takahashi H; Hatta I
    Biophys J; 1995 Apr; 68(4):1374-82. PubMed ID: 7787023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of phase separation in fluid phosphatidylserine/phosphatidylcholine mixtures.
    Hinderliter AK; Huang J; Feigenson GW
    Biophys J; 1994 Nov; 67(5):1906-11. PubMed ID: 7858127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.