These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8770189)

  • 21. Lateral diffusion of molecules in two-component lipid bilayer: a Monte Carlo simulation study.
    Sugár IP; Biltonen RL
    J Phys Chem B; 2005 Apr; 109(15):7373-86. PubMed ID: 16851844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch.
    Fattal DR; Ben-Shaul A
    Biophys J; 1993 Nov; 65(5):1795-809. PubMed ID: 8298013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relaxation kinetics of lipid membranes and its relation to the heat capacity.
    Grabitz P; Ivanova VP; Heimburg T
    Biophys J; 2002 Jan; 82(1 Pt 1):299-309. PubMed ID: 11751317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calorimetry of apolipoprotein-A1 binding to phosphatidylcholine-triolein-cholesterol emulsions.
    Derksen A; Gantz D; Small DM
    Biophys J; 1996 Jan; 70(1):330-8. PubMed ID: 8770209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison between denaturant- and temperature-induced unfolding pathways of protein: a lattice Monte Carlo simulation.
    Choi HS; Huh J; Jo WH
    Biomacromolecules; 2004; 5(6):2289-96. PubMed ID: 15530044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipid-protein interaction induced domains: Kinetics and conformational changes in multicomponent vesicles.
    Sreeja KK; Sunil Kumar PB
    J Chem Phys; 2018 Apr; 148(13):134703. PubMed ID: 29626906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monte Carlo simulation studies of lipid order parameter profiles near integral membrane proteins.
    Sperotto MM; Mouritsen OG
    Biophys J; 1991 Feb; 59(2):261-70. PubMed ID: 2009352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes.
    May S; Harries D; Ben-Shaul A
    Biophys J; 2000 Oct; 79(4):1747-60. PubMed ID: 11023883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Component and state separation in DMPC/DSPC lipid bilayers: a Monte Carlo simulation study.
    Michonova-Alexova EI; Sugár IP
    Biophys J; 2002 Oct; 83(4):1820-33. PubMed ID: 12324404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipids, proteins, and their interplay in the dynamics of temperature-stressed membranes of a cyanobacterium, Synechocystis PCC 6803.
    Laczkó-Dobos H; Szalontai B
    Biochemistry; 2009 Oct; 48(42):10120-8. PubMed ID: 19788309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microthermodynamic interpretation of fluid states from FTIR measurements in lipid membranes: a Monte Carlo study.
    Pinto OA; Bouchet AM; Frías MA; Disalvo EA
    J Phys Chem B; 2014 Sep; 118(35):10436-43. PubMed ID: 25133953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental and Monte Carlo simulation studies of the thermodynamics of polyethyleneglycol chains grafted to lipid bilayers.
    Rex S; Zuckermann MJ; Lafleur M; Silvius JR
    Biophys J; 1998 Dec; 75(6):2900-14. PubMed ID: 9826611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implicit-solvent mesoscale model based on soft-core potentials for self-assembled lipid membranes.
    Revalee JD; Laradji M; Sunil Kumar PB
    J Chem Phys; 2008 Jan; 128(3):035102. PubMed ID: 18205524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluid membranes can drive linear aggregation of adsorbed spherical nanoparticles.
    Sarić A; Cacciuto A
    Phys Rev Lett; 2012 Mar; 108(11):118101. PubMed ID: 22540513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational transition free energy profiles of an adsorbed, lattice model protein by multicanonical Monte Carlo simulation.
    Castells V; Van Tassel PR
    J Chem Phys; 2005 Feb; 122(8):84707. PubMed ID: 15836077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of lipid surface area in protein-membrane systems combining Voronoi tessellation and Monte Carlo integration methods.
    Mori T; Ogushi F; Sugita Y
    J Comput Chem; 2012 Jan; 33(3):286-93. PubMed ID: 22102317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of irreversibly bound annexin A1 protein domains on POPC/POPS solid supported membranes.
    Faiss S; Kastl K; Janshoff A; Steinem C
    Biochim Biophys Acta; 2008; 1778(7-8):1601-10. PubMed ID: 18237543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity.
    Finger S; Kerth A; Dathe M; Blume A
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2998-3006. PubMed ID: 26367060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical temperatures and a critical chain length in saturated diacylphosphatidylcholines: calorimetric, ultrasonic and Monte Carlo simulation study of chain-melting/ordering in aqueous lipid dispersions.
    Kharakoz DP; Panchelyuga MS; Tiktopulo EI; Shlyapnikova EA
    Chem Phys Lipids; 2007 Dec; 150(2):217-28. PubMed ID: 17915200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.