These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 8770194)

  • 1. An elastic network model based on the structure of the red blood cell membrane skeleton.
    Hansen JC; Skalak R; Chien S; Hoger A
    Biophys J; 1996 Jan; 70(1):146-66. PubMed ID: 8770194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrin properties and the elasticity of the red blood cell membrane skeleton.
    Hansen J; Skalak R; Chien S; Hoger A
    Biorheology; 1997; 34(4-5):327-48. PubMed ID: 9578807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of network topology on the elasticity of the red blood cell membrane skeleton.
    Hansen JC; Skalak R; Chien S; Hoger A
    Biophys J; 1997 May; 72(5):2369-81. PubMed ID: 9129841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elasticity of the human red blood cell skeleton.
    Lenormand G; Hénon S; Richert A; Siméon J; Gallet F
    Biorheology; 2003; 40(1-3):247-51. PubMed ID: 12454412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoskeleton influence on normal and tangent fluctuation modes in the red blood cells.
    Rochal SB; Lorman VL
    Phys Rev Lett; 2006 Jun; 96(24):248102. PubMed ID: 16907283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tethered adhesive particle model of two-dimensional elasticity and its application to the erythrocyte membrane.
    Feng S; MacDonald RC
    Biophys J; 1996 Feb; 70(2):857-67. PubMed ID: 8789103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature transitions of protein properties in human red blood cells.
    Artmann GM; Kelemen C; Porst D; Büldt G; Chien S
    Biophys J; 1998 Dec; 75(6):3179-83. PubMed ID: 9826638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remodeling the shape of the skeleton in the intact red cell.
    Khodadad JK; Waugh RE; Podolski JL; Josephs R; Steck TL
    Biophys J; 1996 Feb; 70(2):1036-44. PubMed ID: 8789122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrin, human erythrocyte shapes, and mechanochemical properties.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Biophys J; 1986 Jan; 49(1):319-27. PubMed ID: 3955175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid model for erythrocyte membrane: a single unit of protein network coupled with lipid bilayer.
    Zhu Q; Vera C; Asaro RJ; Sche P; Sung LA
    Biophys J; 2007 Jul; 93(2):386-400. PubMed ID: 17449663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell.
    Parker KH; Winlove CP
    Biophys J; 1999 Dec; 77(6):3096-107. PubMed ID: 10585931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.
    Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE
    Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields.
    Engelhardt H; Sackmann E
    Biophys J; 1988 Sep; 54(3):495-508. PubMed ID: 3207837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is the surface area of the red cell membrane skeleton locally conserved?
    Fischer TM
    Biophys J; 1992 Feb; 61(2):298-305. PubMed ID: 1547320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models.
    Boey SK; Boal DH; Discher DE
    Biophys J; 1998 Sep; 75(3):1573-83. PubMed ID: 9726958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic properties of the red blood cell membrane that determine echinocyte deformability.
    Kuzman D; Svetina S; Waugh RE; Zeks B
    Eur Biophys J; 2004 Feb; 33(1):1-15. PubMed ID: 13680208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determinants of the rigidity of the red cell membrane.
    Nash GB; Gratzer WB
    Biorheology; 1993; 30(5-6):397-407. PubMed ID: 8186406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic energy of curvature-driven bump formation on red blood cell membrane.
    Waugh RE
    Biophys J; 1996 Feb; 70(2):1027-35. PubMed ID: 8789121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoelasticity of red blood cell membrane.
    Waugh R; Evans EA
    Biophys J; 1979 Apr; 26(1):115-31. PubMed ID: 262408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of a Gap restoration in the membrane skeleton of the red blood cell: possible role for myosin II in local repair.
    Cibert C; Prulière G; Lacombe C; Deprette C; Cassoly R
    Biophys J; 1999 Mar; 76(3):1153-65. PubMed ID: 10049301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.