BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8770222)

  • 1. A conserved Trp residue in HwBR contributes to its unique tolerance toward acidic environments.
    Yu CH; Wu HY; Lin HS; Yang CS
    Biophys J; 2022 Aug; 121(16):3136-3145. PubMed ID: 35808832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the Photocycle Kinetics of Bacteriorhodopsin in Lipid Nanodiscs.
    Lee TY; Yeh V; Chuang J; Chung Chan JC; Chu LK; Yu TY
    Biophys J; 2015 Nov; 109(9):1899-906. PubMed ID: 26536266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The EF loop in green proteorhodopsin affects conformation and photocycle dynamics.
    Mehler M; Scholz F; Ullrich SJ; Mao J; Braun M; Brown LJ; Brown RC; Fiedler SA; Becker-Baldus J; Wachtveitl J; Glaubitz C
    Biophys J; 2013 Jul; 105(2):385-97. PubMed ID: 23870260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin.
    Shibata M; Yamashita H; Uchihashi T; Kandori H; Ando T
    Nat Nanotechnol; 2010 Mar; 5(3):208-12. PubMed ID: 20154686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ability of actinic light to modify the bacteriorhodopsin photocycle revisited: heterogeneity vs photocooperativity.
    Hendler RW; Shrager RI; Meuse CW
    Biochemistry; 2008 May; 47(19):5406-16. PubMed ID: 18422347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteriorhodopsin photocycle at cryogenic temperatures reveals distributed barriers of conformational substates.
    Dioumaev AK; Lanyi JK
    Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9621-6. PubMed ID: 17535910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actinic light-energy dependence of proton release from bacteriorhodopsin.
    Tóth-Boconádi R; Taneva SG; Keszthelyi L
    Biophys J; 2005 Oct; 89(4):2605-9. PubMed ID: 16085768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of small intraprotein cavities in the catalytic cycle of bacteriorhodopsin.
    Friedman R; Nachliel E; Gutman M
    Biophys J; 2003 Aug; 85(2):886-96. PubMed ID: 12885636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the bacteriorhodopsin mutant F219L N intermediate revealed by electron crystallography.
    Vonck J
    EMBO J; 2000 May; 19(10):2152-60. PubMed ID: 10811606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and thermodynamic study of the bacteriorhodopsin photocycle over a wide pH range.
    Ludmann K; Gergely C; Váró G
    Biophys J; 1998 Dec; 75(6):3110-9. PubMed ID: 9826631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restricted motion of photoexcited bacteriorhodopsin in purple membrane containing ethanol.
    Kikukawa T; Araiso T; Shimozawa T; Mukasa K; Kamo N
    Biophys J; 1997 Jul; 73(1):357-66. PubMed ID: 9199800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A local electrostatic change is the cause of the large-scale protein conformation shift in bacteriorhodopsin.
    Brown LS; Kamikubo H; Zimányi L; Kataoka M; Tokunaga F; Verdegem P; Lugtenburg J; Lanyi JK
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5040-4. PubMed ID: 9144186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perturbed interaction between residues 85 and 204 in Tyr-185-->Phe and Asp-85-->Glu bacteriorhodopsins.
    Richter HT; Needleman R; Lanyi JK
    Biophys J; 1996 Dec; 71(6):3392-8. PubMed ID: 8968608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein structural change at the cytoplasmic surface as the cause of cooperativity in the bacteriorhodopsin photocycle.
    Váró G; Needleman R; Lanyi JK
    Biophys J; 1996 Jan; 70(1):461-7. PubMed ID: 8770222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional significance of a protein conformation change at the cytoplasmic end of helix F during the bacteriorhodopsin photocycle.
    Brown LS; Váró G; Needleman R; Lanyi JK
    Biophys J; 1995 Nov; 69(5):2103-11. PubMed ID: 8580354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proton transfers in the cytoplasmic domain of bacteriorhodopsin are facilitated by a cluster of interacting residues.
    Brown LS; Yamazaki Y; Maeda A; Sun L; Needleman R; Lanyi JK
    J Mol Biol; 1994 Jun; 239(3):401-14. PubMed ID: 8201621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin.
    Lanyi JK
    Biochim Biophys Acta; 1993 Dec; 1183(2):241-61. PubMed ID: 8268193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic analysis of protein conformational changes in the bacteriorhodopsin photocycle.
    Subramaniam S; Henderson R
    Biochim Biophys Acta; 2000 Aug; 1460(1):157-65. PubMed ID: 10984597
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.