BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 8770602)

  • 1. Genome-wide high-resolution mapping by recurrent intermating using Arabidopsis thaliana as a model.
    Liu SC; Kowalski SP; Lan TH; Feldmann KA; Paterson AH
    Genetics; 1996 Jan; 142(1):247-58. PubMed ID: 8770602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the determination of recombination rates in intermated recombinant inbred populations.
    Winkler CR; Jensen NM; Cooper M; Podlich DW; Smith OS
    Genetics; 2003 Jun; 164(2):741-5. PubMed ID: 12807793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of linkage maps from F2 and three times intermated generations in two populations of European flint maize (Zea mays L.).
    Falke KC; Melchinger AE; Flachenecker C; Kusterer B; Frisch M
    Theor Appl Genet; 2006 Sep; 113(5):857-66. PubMed ID: 16832645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population.
    Lee M; Sharopova N; Beavis WD; Grant D; Katt M; Blair D; Hallauer A
    Plant Mol Biol; 2002; 48(5-6):453-61. PubMed ID: 11999829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IRILmap: linkage map distance correction for intermated recombinant inbred lines/advanced recombinant inbred strains.
    Falque M
    Bioinformatics; 2005 Aug; 21(16):3441-2. PubMed ID: 15961443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The map expansion obtained with recombinant inbred strains and intermated recombinant inbred populations for finite generation designs.
    Teuscher F; Guiard V; Rudolph PE; Brockmann GA
    Genetics; 2005 Jun; 170(2):875-9. PubMed ID: 15781703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pheno2Geno - High-throughput generation of genetic markers and maps from molecular phenotypes for crosses between inbred strains.
    Zych K; Li Y; van der Velde JK; Joosen RV; Ligterink W; Jansen RC; Arends D
    BMC Bioinformatics; 2015 Feb; 16(1):51. PubMed ID: 25886992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene identification and cloning by molecular marker mapping.
    Jander G
    Methods Mol Biol; 2006; 323():115-26. PubMed ID: 16739572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic mapping of mutations using phenotypic pools and mapped RAPD markers.
    Williams JG; Reiter RS; Young RM; Scolnik PA
    Nucleic Acids Res; 1993 Jun; 21(11):2697-702. PubMed ID: 8332466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linkage maps for Arabidopsis lyrata subsp. lyrata and Arabidopsis lyrata subsp. petraea combining anonymous and Arabidopsis thaliana-derived markers.
    Beaulieu J; Jean M; Belzile F
    Genome; 2007 Feb; 50(2):142-50. PubMed ID: 17546079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective mapping: a strategy for optimizing the construction of high-density linkage maps.
    Vision TJ; Brown DG; Shmoys DB; Durrett RT; Tanksley SD
    Genetics; 2000 May; 155(1):407-20. PubMed ID: 10790413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted Recombinant Progeny: a design for ultra-high resolution mapping of Quantitative Trait Loci in crosses between inbred or pure lines.
    Heifetz EM; Soller M
    BMC Genet; 2015 Jul; 16():76. PubMed ID: 26148479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linkage mapping of 1454 new maize candidate gene Loci.
    Falque M; Décousset L; Dervins D; Jacob AM; Joets J; Martinant JP; Raffoux X; Ribière N; Ridel C; Samson D; Charcosset A; Murigneux A
    Genetics; 2005 Aug; 170(4):1957-66. PubMed ID: 15937132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation of the parental genome contribution in segregating populations derived from biparental crosses and its relationship with heterosis of their Design III progenies.
    Melchinger AE; Dhillon BS; Mi X
    Theor Appl Genet; 2010 Jan; 120(2):311-9. PubMed ID: 19911161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and mapping of a new set of 129 RFLP markers in Arabidopsis thaliana using recombinant inbred lines.
    Liu YG; Mitsukawa N; Lister C; Dean C; Whittier RF
    Plant J; 1996 Oct; 10(4):733-6. PubMed ID: 8893548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize.
    Fu Y; Wen TJ; Ronin YI; Chen HD; Guo L; Mester DI; Yang Y; Lee M; Korol AB; Ashlock DA; Schnable PS
    Genetics; 2006 Nov; 174(3):1671-83. PubMed ID: 16951074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population.
    Keurentjes JJ; Bentsink L; Alonso-Blanco C; Hanhart CJ; Blankestijn-De Vries H; Effgen S; Vreugdenhil D; Koornneef M
    Genetics; 2007 Feb; 175(2):891-905. PubMed ID: 17179089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombination and linkage disequilibrium in Arabidopsis thaliana.
    Kim S; Plagnol V; Hu TT; Toomajian C; Clark RM; Ossowski S; Ecker JR; Weigel D; Nordborg M
    Nat Genet; 2007 Sep; 39(9):1151-5. PubMed ID: 17676040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting natural variation in Arabidopsis.
    Molenaar JA; Keurentjes JJ
    Methods Mol Biol; 2014; 1062():139-53. PubMed ID: 24057363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Arabidopsis recombinant inbred line populations genotyped using SNPWave and their use for mapping flowering-time quantitative trait loci.
    el-Lithy ME; Bentsink L; Hanhart CJ; Ruys GJ; Rovito D; Broekhof JL; van der Poel HJ; van Eijk MJ; Vreugdenhil D; Koornneef M
    Genetics; 2006 Mar; 172(3):1867-76. PubMed ID: 16361234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.