These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 8770798)

  • 1. An above-knee prosthesis with a system of energy recovery: a technical note.
    Farber BS; Jacobson JS
    J Rehabil Res Dev; 1995 Nov; 32(4):337-48. PubMed ID: 8770798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ankle-knee synchronous in a new endoskeletal above-knee prosthetic mechanism: a preliminary report.
    Li WK
    Arch Phys Med Rehabil; 1976 Oct; 57(10):479-81. PubMed ID: 973790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ankle-knee synchronous knee lock mechanism: a revision.
    Lee W
    Arch Phys Med Rehabil; 1982 Aug; 63(8):392-3. PubMed ID: 7115035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees.
    Beyaert C; Grumillier C; Martinet N; Paysant J; André JM
    Gait Posture; 2008 Aug; 28(2):278-84. PubMed ID: 18295487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conventional 4-bar linkage knee mechanisms: a strength-weakness analysis.
    de Vries J
    J Rehabil Res Dev; 1995 Feb; 32(1):36-42. PubMed ID: 7760266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis.
    Anderson FC; Goldberg SR; Pandy MG; Delp SL
    J Biomech; 2004 May; 37(5):731-7. PubMed ID: 15047002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy cost during ambulation in transfemoral amputees: a knee joint with a mechanical swing phase control vs a knee joint with a pneumatic swing phase control.
    Boonstra AM; Schrama J; Fidler V; Eisma WH
    Scand J Rehabil Med; 1995 Jun; 27(2):77-81. PubMed ID: 7569824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees.
    Grumillier C; Martinet N; Paysant J; André JM; Beyaert C
    J Biomech; 2008 Oct; 41(14):2926-31. PubMed ID: 18771768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dynamic loads at knee joint of trans-tibial amputee on different terrains].
    Jia X; Zhang M; Fan Y; Wang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):221-4. PubMed ID: 15884522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: a tri-planar kinetic mechanism.
    Jenkyn TR; Hunt MA; Jones IC; Giffin JR; Birmingham TB
    J Biomech; 2008; 41(2):276-83. PubMed ID: 18061197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait evaluation of an automatic stance-control knee orthosis in a patient with postpoliomyelitis.
    Hebert JS; Liggins AB
    Arch Phys Med Rehabil; 2005 Aug; 86(8):1676-80. PubMed ID: 16084826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle.
    Begg RK; Sparrow WA
    J Med Eng Technol; 2006; 30(6):382-9. PubMed ID: 17060166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic and kinetic factors that correlate with improved knee flexion following treatment for stiff-knee gait.
    Goldberg SR; Ounpuu S; Arnold AS; Gage JR; Delp SL
    J Biomech; 2006; 39(4):689-98. PubMed ID: 16439238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobility function of a prosthetic knee joint with an automatic stance phase lock.
    Andrysek J; Klejman S; Torres-Moreno R; Heim W; Steinnagel B; Glasford S
    Prosthet Orthot Int; 2011 Jun; 35(2):163-70. PubMed ID: 21697198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint].
    Stinus H
    Z Orthop Ihre Grenzgeb; 2000; 138(3):278-82. PubMed ID: 10929622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of direct measurement versus cadaver estimates of anthropometry in the calculation of joint moments during above-knee prosthetic gait in pediatrics.
    Goldberg EJ; Requejo PS; Fowler EG
    J Biomech; 2008; 41(3):695-700. PubMed ID: 18031751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.