These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8770801)

  • 41. Effects of seated whole-body vibration on postural control of the trunk during unstable seated balance.
    Slota GP; Granata KP; Madigan ML
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):381-6. PubMed ID: 18093708
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of the distance between the backrest of a chair and the position of the pelvis on the maximum pressure on the ischium and estimated shear force.
    Kobara K; Eguchi A; Watanabe S; Shinkoda K
    Disabil Rehabil Assist Technol; 2008 Sep; 3(5):285-91. PubMed ID: 18608435
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of varying acceleration of platform translation and toes-up rotations on the pattern and magnitude of balance reactions in humans.
    Szturm T; Fallang B
    J Vestib Res; 1998; 8(5):381-97. PubMed ID: 9770656
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic trunk stability is improved in paraplegics following kayak ergometer training.
    Bjerkefors A; Carpenter MG; Thorstensson A
    Scand J Med Sci Sports; 2007 Dec; 17(6):672-9. PubMed ID: 17331085
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stability of children with cerebral palsy in their wheelchair seating: perceptions of parents and therapists.
    Lacoste M; Therrien M; Prince F
    Disabil Rehabil Assist Technol; 2009 May; 4(3):143-50. PubMed ID: 19378209
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Sitting in a wheelchair--a balance between stability and mobility].
    Pflege Z; 2005 Nov; 58(11):731. PubMed ID: 16329707
    [No Abstract]   [Full Text] [Related]  

  • 47. Vibration exposure of individuals using wheelchairs over sidewalk surfaces.
    Wolf E; Pearlman J; Cooper RA; Fitzgerald SG; Kelleher A; Collins DM; Boninger ML; Cooper R
    Disabil Rehabil; 2005 Dec; 27(23):1443-9. PubMed ID: 16418059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of rear-wheel camber on wheelchair stability.
    Trudel G; Kirby RL; Ackroyd-Stolarz SA; Kirkland S
    Arch Phys Med Rehabil; 1997 Jan; 78(1):78-81. PubMed ID: 9014962
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wheelchair skills training for community-based manual wheelchair users: a randomized controlled trial.
    Best KL; Kirby RL; Smith C; MacLeod DA
    Arch Phys Med Rehabil; 2005 Dec; 86(12):2316-23. PubMed ID: 16344029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sitting pressure in the tilted position: manual tilt-in-space wheelchair vs. manual wheelchair with a new rear antitip device.
    MacDonald B; Kirby RL; Smith C; MacLeod DA; Webber A
    Am J Phys Med Rehabil; 2009 Jan; 88(1):61-5. PubMed ID: 18971771
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding and measuring powered wheelchair mobility and manoeuvrability. Part I. Reach in confined spaces.
    Holliday PJ; Mihailidis A; Rolfson R; Fernie G
    Disabil Rehabil; 2005 Aug; 27(16):939-49. PubMed ID: 16096247
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improving wheelchair prescription: an analysis of user needs and existing tools.
    Moody L; Woodcock A; Heelis M; Chichi C; Fielden S; Stefanov D
    Work; 2012; 41 Suppl 1():1980-4. PubMed ID: 22317006
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The development and testing of a system for wheelchair stability measurement.
    Stefanov D; Avtanski A; Shapcott N; Magee P; Dryer P; Fielden S; Heelis M; Evans J; Moody L
    Med Eng Phys; 2015 Nov; 37(11):1061-9. PubMed ID: 26403319
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Product development: using a 3D computer model to optimize the stability of the Rocket powered wheelchair.
    Pinkney S; Fernie G
    Assist Technol; 2001; 13(1):46-58. PubMed ID: 12212436
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The manual wheelchair wheelie: a review of our current understanding of an important motor skill.
    Kirby RL; Smith C; Seaman R; Macleod DA; Parker K
    Disabil Rehabil Assist Technol; 2006; 1(1-2):119-27. PubMed ID: 19256175
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Manual wheelchair users gradually face fewer postural stability and control challenges with increasing rolling resistance while maintaining a rear-wheel wheelie.
    Lalumiere M; Desroches G; Gourdou P; Routhier F; Bouyer L; Gagnon DH
    Hum Mov Sci; 2018 Dec; 62():194-201. PubMed ID: 30419512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment criteria for evaluating the stability and position of the centre of gravity on a balance training platform: a simulation with MatlabĀ®.
    Ambrozy C; Rattay F
    J Med Eng Technol; 2011 Jul; 35(5):239-45. PubMed ID: 21619421
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identifying characteristic back shapes from anatomical scans of wheelchair users to improve seating design.
    Crytzer TM; Hong EK; Dicianno BE; Pearlman J; Schmeler M; Cooper RA
    Med Eng Phys; 2016 Sep; 38(9):999-1007. PubMed ID: 27426985
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biomechanics and motor control of normal young adults performing a wheelchair wheelie balance task.
    Sekiya N; Yamazaki H
    Percept Mot Skills; 2010 Jun; 110(3 Pt 1):825-39. PubMed ID: 20681335
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomechanical Relationships Between Manual Wheelchair Steering and the Position of the Human Body's Center of Gravity.
    Wieczorek B; Kukla M
    J Biomech Eng; 2020 Aug; 142(8):. PubMed ID: 32110801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.