These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 8770802)

  • 1. The effect of prosthetic alignment on relative limb loading in persons with trans-tibial amputation: a preliminary report.
    Pinzur MS; Cox W; Kaiser J; Morris T; Patwardhan A; Vrbos L
    J Rehabil Res Dev; 1995 Nov; 32(4):373-7. PubMed ID: 8770802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees.
    Nolan L; Lees A
    Prosthet Orthot Int; 2000 Aug; 24(2):117-25. PubMed ID: 11061198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of five prosthetic feet on the gait and loading of the sound limb in dysvascular below-knee amputees.
    Snyder RD; Powers CM; Fontaine C; Perry J
    J Rehabil Res Dev; 1995 Nov; 32(4):309-15. PubMed ID: 8770795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface pressures and shear stresses at thirteen socket sites on two persons with transtibial amputation.
    Sanders JE; Lam D; Dralle AJ; Okumura R
    J Rehabil Res Dev; 1997 Jan; 34(1):19-43. PubMed ID: 9021623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prosthetic foot roll-over shapes with implications for alignment of trans-tibial prostheses.
    Hansen AH; Childress DS; Knox EH
    Prosthet Orthot Int; 2000 Dec; 24(3):205-15. PubMed ID: 11195355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pilot study comparing prosthetic to sound limb gait mechanics during a turning task in people with transtibial amputation.
    Clemens S; Pew C
    Clin Biomech (Bristol, Avon); 2023 Oct; 109():106077. PubMed ID: 37643570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical investigation of the pressure and shear stress on the trans-tibial stump with a prosthesis.
    Zhang M; Turner-Smith AR; Tanner A; Roberts VC
    Med Eng Phys; 1998 Apr; 20(3):188-98. PubMed ID: 9690489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric analysis using the finite element method to investigate prosthetic interface stresses for persons with trans-tibial amputation.
    Silver-Thorn MB; Childress DS
    J Rehabil Res Dev; 1996 Jul; 33(3):227-38. PubMed ID: 8823671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peak tibial axial acceleration during walking is related to intact-side lower limb pain in persons with unilateral transtibial amputation.
    Parr TE; Farrokhi S; Hendershot BD; Butowicz CM
    Gait Posture; 2024 Mar; 109():165-169. PubMed ID: 38310849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Static versus dynamic prosthetic weight bearing in elderly trans-tibial amputees.
    Jones ME; Steel JR; Bashford GM; Davidson IR
    Prosthet Orthot Int; 1997 Aug; 21(2):100-6. PubMed ID: 9285953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A preliminary investigation of pelvic obliquity patterns during gait in persons with transtibial and transfemoral amputation.
    Michaud SB; Gard SA; Childress DS
    J Rehabil Res Dev; 2000; 37(1):1-10. PubMed ID: 10847567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Socket considerations for the patient with a transtibial amputation.
    Fergason J; Smith DG
    Clin Orthop Relat Res; 1999 Apr; (361):76-84. PubMed ID: 10212599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface pressures and shear stresses: sagittal plane angular alignment effects in three trans-tibial amputee case studies.
    Sanders JE; Daly CH
    Prosthet Orthot Int; 1999 Apr; 23(1):21-9. PubMed ID: 10355640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of a vertical compliance prosthetic foot.
    Miller LA; Childress DS
    J Rehabil Res Dev; 1997 Jan; 34(1):52-7. PubMed ID: 9021625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of below-knee suspension systems: effect on gait.
    Wirta RW; Golbranson FL; Mason R; Calvo K
    J Rehabil Res Dev; 1990; 27(4):385-96. PubMed ID: 2089149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conventional patellar-tendon-bearing (PTB) socket/stump interface dynamic pressure distributions recorded during the prosthetic stance phase of gait of a trans-tibial amputee.
    Convery P; Buis AW
    Prosthet Orthot Int; 1998 Dec; 22(3):193-8. PubMed ID: 9881607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of limb alignment on the gait of above-knee amputees.
    Yang L; Solomonidis SE; Spence WD; Paul JP
    J Biomech; 1991; 24(11):981-97. PubMed ID: 1761584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee amputations.
    Powers CM; Torburn L; Perry J; Ayyappa E
    Arch Phys Med Rehabil; 1994 Jul; 75(7):825-9. PubMed ID: 8024435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking symmetry and energy cost in persons with unilateral transtibial amputations: matching prosthetic and intact limb inertial properties.
    Mattes SJ; Martin PE; Royer TD
    Arch Phys Med Rehabil; 2000 May; 81(5):561-8. PubMed ID: 10807092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of prosthetic mass on swing phase work during above-knee amputee ambulation.
    Gitter A; Czerniecki J; Meinders M
    Am J Phys Med Rehabil; 1997; 76(2):114-21. PubMed ID: 9129517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.