These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8771024)

  • 61. Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial spin labeling.
    Silva AC; Zhang W; Williams DS; Koretsky AP
    Magn Reson Med; 1995 Feb; 33(2):209-14. PubMed ID: 7707911
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reliability of semiquantitative ultrasonic perfusion imaging of the brain.
    Eyding J; Wilkening W; Reckhardt M; Meves S; Postert T
    J Neuroimaging; 2004 Apr; 14(2):143-9. PubMed ID: 15095560
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pseudo-continuous arterial spin labeling quantifies cerebral blood flow in patients with acute ischemic stroke and chronic lacunar stroke.
    Guo L; Zhang Q; Ding L; Liu K; Ding K; Jiang C; Liu C; Li K; Cui L
    Clin Neurol Neurosurg; 2014 Oct; 125():229-36. PubMed ID: 25203634
    [TBL] [Abstract][Full Text] [Related]  

  • 64. 2D time-of-flight MR angiography using concatenated saturation bands for determining direction of flow in the intracranial vessels.
    Nesbit GM; DeMarco JK
    Neuroradiology; 1997 Jul; 39(7):461-8. PubMed ID: 9258920
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A model of the inversion process in an arterial inversion experiment.
    Marro KI; Hayes CE; Kushmerick MJ
    NMR Biomed; 1997 Oct; 10(7):324-32. PubMed ID: 9471123
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An optimized velocity selective arterial spin labeling module with reduced eddy current sensitivity for improved perfusion quantification.
    Meakin JA; Jezzard P
    Magn Reson Med; 2013 Mar; 69(3):832-8. PubMed ID: 22556043
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Optimization of three-dimensional time-of-flight magnetic resonance angiography of the intracranial arteries.
    Harada K; Honmou O; Odawara Y; Bando M; Houkin K
    Neurol Med Chir (Tokyo); 2006 Nov; 46(11):523-8; discussion 528. PubMed ID: 17124366
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Perfusion-weighted imaging of interictal hypoperfusion in temporal lobe epilepsy using FAIR-HASTE: comparison with H(2)(15)O PET measurements.
    Liu HL; Kochunov P; Hou J; Pu Y; Mahankali S; Feng CM; Yee SH; Wan YL; Fox PT; Gao JH
    Magn Reson Med; 2001 Mar; 45(3):431-5. PubMed ID: 11241700
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Normal saline as a natural intravascular contrast agent for dynamic perfusion-weighted MRI of the brain: Proof of concept at 1.5T.
    Jara H; Mian A; Sakai O; Anderson SW; Horn MJ; Norbash AM; Soto JA
    J Magn Reson Imaging; 2016 Dec; 44(6):1580-1591. PubMed ID: 27122183
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quantitative assessment of the effects of water proton concentration and water T
    Lee DH; Heo HY; Zhang K; Zhang Y; Jiang S; Zhao X; Zhou J
    Magn Reson Med; 2017 Feb; 77(2):855-863. PubMed ID: 26841096
    [TBL] [Abstract][Full Text] [Related]  

  • 71. pH-sensitive amide proton transfer effect dominates the magnetization transfer asymmetry contrast during acute ischemia-quantification of multipool contribution to in vivo CEST MRI.
    Wu Y; Zhou IY; Lu D; Manderville E; Lo EH; Zheng H; Sun PZ
    Magn Reson Med; 2018 Mar; 79(3):1602-1608. PubMed ID: 28733991
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cocaine-induced changes in time course of regional cerebral blood volume and transit time as determined by dynamic MR imaging.
    Li KL; Suojanen JN
    J Magn Reson Imaging; 1995; 5(6):715-8. PubMed ID: 8748491
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Magnetization transfer induced biexponential longitudinal relaxation.
    Prantner AM; Bretthorst GL; Neil JJ; Garbow JR; Ackerman JJ
    Magn Reson Med; 2008 Sep; 60(3):555-63. PubMed ID: 18759367
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Radiofrequency labeling strategies in chemical exchange saturation transfer MRI.
    Bie C; van Zijl P; Xu J; Song X; Yadav NN
    NMR Biomed; 2023 Jun; 36(6):e4944. PubMed ID: 37002814
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The relationship between cytochrome c oxidase, CBF and CMRO
    Hashem M; Wu Y; Dunn JF
    J Cereb Blood Flow Metab; 2023 Aug; 43(8):1351-1364. PubMed ID: 36950950
    [TBL] [Abstract][Full Text] [Related]  

  • 76. 3D APT and NOE CEST-MRI of healthy volunteers and patients with non-enhancing glioma at 3 T.
    Wu Y; Wood TC; Arzanforoosh F; Hernandez-Tamames JA; Barker GJ; Smits M; Warnert EAH
    MAGMA; 2022 Feb; 35(1):63-73. PubMed ID: 34994858
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Whole-brain amide CEST imaging at 3T with a steady-state radial MRI acquisition.
    Sui R; Chen L; Li Y; Huang J; Chan KWY; Xu X; van Zijl PCM; Xu J
    Magn Reson Med; 2021 Aug; 86(2):893-906. PubMed ID: 33772859
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Development of fast multi-slice apparent T
    Ji Y; Lu D; Jiang Y; Wang X; Meng Y; Sun PZ
    Magn Reson Med; 2021 Mar; 85(3):1571-1580. PubMed ID: 32970848
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Numerical approximation to the general kinetic model for ASL quantification.
    Lee NG; Javed A; Jao TR; Nayak KS
    Magn Reson Med; 2020 Nov; 84(5):2846-2857. PubMed ID: 32367574
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Repeatability and reproducibility of prospective motion- and shim corrected 2D glycoCEST MRI.
    Simegn GL; Alhamud A; van der Kouwe AJW; Meintjes E; Robertson F
    Quant Imaging Med Surg; 2019 Oct; 9(10):1674-1685. PubMed ID: 31728311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.