BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 8771191)

  • 1. Identification of an essential acidic residue in Cdc25 protein phosphatase and a general three-dimensional model for a core region in protein phosphatases.
    Eckstein JW; Beer-Romero P; Berdo I
    Protein Sci; 1996 Jan; 5(1):5-12. PubMed ID: 8771191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain.
    Hofmann K; Bucher P; Kajava AV
    J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural analysis of the PP2C phosphatase tPphA from Thermosynechococcus elongatus: a flexible flap subdomain controls access to the catalytic site.
    Schlicker C; Fokina O; Kloft N; Grüne T; Becker S; Sheldrick GM; Forchhammer K
    J Mol Biol; 2008 Feb; 376(2):570-81. PubMed ID: 18164312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic evaluation of the signature motif (H/V)CX5R(S/T) in protein-tyrosine phosphatases.
    Peters GH; Frimurer TM; Olsen OH
    Biochemistry; 1998 Apr; 37(16):5383-93. PubMed ID: 9548920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A targeted library of small-molecule, tyrosine, and dual-specificity phosphatase inhibitors derived from a rational core design and random side chain variation.
    Rice RL; Rusnak JM; Yokokawa F; Yokokawa S; Messner DJ; Boynton AL; Wipf P; Lazo JS
    Biochemistry; 1997 Dec; 36(50):15965-74. PubMed ID: 9398331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization of the As/Sb reductase LmACR2 from Leishmania major.
    Mukhopadhyay R; Bisacchi D; Zhou Y; Armirotti A; Bordo D
    J Mol Biol; 2009 Mar; 386(5):1229-39. PubMed ID: 18687336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of active site residues and the NH2-terminal domain in the catalysis and substrate binding of human Cdc25.
    Xu X; Burke SP
    J Biol Chem; 1996 Mar; 271(9):5118-24. PubMed ID: 8617791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of a low-molecular-weight phosphotyrosine protein phosphatase.
    Su XD; Taddei N; Stefani M; Ramponi G; Nordlund P
    Nature; 1994 Aug; 370(6490):575-8. PubMed ID: 8052313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VHR and PTP1 protein phosphatases exhibit remarkably different active site specificities toward low molecular weight nonpeptidic substrates.
    Chen L; Montserat J; Lawrence DS; Zhang ZY
    Biochemistry; 1996 Jul; 35(29):9349-54. PubMed ID: 8755712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM; McIntosh EM; Muscat GE
    J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the Arabidopsis thaliana Arath;CDC25 dual-specificity tyrosine phosphatase.
    Landrieu I; Hassan S; Sauty M; Dewitte F; Wieruszeski JM; Inzé D; De Veylder L; Lippens G
    Biochem Biophys Res Commun; 2004 Sep; 322(3):734-9. PubMed ID: 15336525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitution of two variant residues in the protein tyrosine phosphatase-like PTP35/IA-2 sequence reconstitutes catalytic activity.
    Magistrelli G; Toma S; Isacchi A
    Biochem Biophys Res Commun; 1996 Oct; 227(2):581-8. PubMed ID: 8878556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the catalytic subunit of muscle protein phosphatase-1.
    Zhang J; Zhang Z; Brew K; Lee EY
    Biochemistry; 1996 May; 35(20):6276-82. PubMed ID: 8639569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyzing the catalytic mechanism of MPtpA: a low molecular weight protein tyrosine phosphatase from Mycobacterium tuberculosis through site-directed mutagenesis.
    Madhurantakam C; Chavali VR; Das AK
    Proteins; 2008 May; 71(2):706-14. PubMed ID: 17975835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis, kinetic, and spectroscopic studies of the P-loop residues in a low molecular weight protein tyrosine phosphatase.
    Evans B; Tishmack PA; Pokalsky C; Zhang M; Van Etten RL
    Biochemistry; 1996 Oct; 35(42):13609-17. PubMed ID: 8885840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation.
    Stewart AE; Dowd S; Keyse SM; McDonald NQ
    Nat Struct Biol; 1999 Feb; 6(2):174-81. PubMed ID: 10048930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the function of Asp128 in the lower molecular weight protein-tyrosine phosphatase-catalyzed reaction. A pre-steady-state and steady-state kinetic investigation.
    Wu L; Zhang ZY
    Biochemistry; 1996 Apr; 35(17):5426-34. PubMed ID: 8611532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution.
    Fu D; Huang H; Meng K; Wang Y; Luo H; Yang P; Yuan T; Yao B
    Biotechnol Bioeng; 2009 Aug; 103(5):857-64. PubMed ID: 19378262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.
    Mustelin T; Tautz L; Page R
    J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational and dynamic changes of Yersinia protein tyrosine phosphatase induced by ligand binding and active site mutation and revealed by H/D exchange and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Wang F; Li W; Emmett MR; Hendrickson CL; Marshall AG; Zhang YL; Wu L; Zhang ZY
    Biochemistry; 1998 Nov; 37(44):15289-99. PubMed ID: 9799489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.