These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 8771199)
1. A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols. Holmquist M; Haeffner F; Norin T; Hult K Protein Sci; 1996 Jan; 5(1):83-8. PubMed ID: 8771199 [TBL] [Abstract][Full Text] [Related]
2. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa. Norin M; Haeffner F; Achour A; Norin T; Hult K Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809 [TBL] [Abstract][Full Text] [Related]
3. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model. Schulz T; Pleiss J; Schmid RD Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799 [TBL] [Abstract][Full Text] [Related]
4. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption. Foresti ML; Ferreira ML Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053 [TBL] [Abstract][Full Text] [Related]
5. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen-bonding-driven enantioselective resolution against the Kazlauskas rule to afford γ-amino alcohols by Candida rugosa lipase. Min B; Park J; Sim YK; Jung S; Kim SH; Song JK; Kim BT; Park SY; Yun J; Park S; Lee H Chembiochem; 2015 Jan; 16(1):77-82. PubMed ID: 25477295 [TBL] [Abstract][Full Text] [Related]
7. Environmentally friendly, efficient resolution of racemic secondary alcohols by lipase-catalyzed enantioselective transesterification in ionic liquids in the presence of organic bases. Wu XM; Xin JY; Sun W; Xia CG Chem Biodivers; 2007 Feb; 4(2):183-8. PubMed ID: 17311231 [TBL] [Abstract][Full Text] [Related]
9. Activity and enantioselectivity of wildtype and lid mutated Candida rugosa lipase isoform 1 in organic solvents. Secundo F; Carrea G; Tarabiono C; Brocca S; Lotti M Biotechnol Bioeng; 2004 Apr; 86(2):236-40. PubMed ID: 15052644 [TBL] [Abstract][Full Text] [Related]
10. Structure-reactivity relationships for the inhibition mechanism at the second alkyl-chain-binding site of cholesterol esterase and lipase. Lin G; Shieh CT; Ho HC; Chouhwang JY; Lin WY; Lu CP Biochemistry; 1999 Aug; 38(31):9971-81. PubMed ID: 10433704 [TBL] [Abstract][Full Text] [Related]
11. Effects of alcohol and buffer treatments on the activity and enantioselectivity of Candida rugosa lipase. Takaç S; Unlü AE Prep Biochem Biotechnol; 2009; 39(2):124-41. PubMed ID: 19291575 [TBL] [Abstract][Full Text] [Related]
12. Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. Magnusson AO; Rotticci-Mulder JC; Santagostino A; Hult K Chembiochem; 2005 Jun; 6(6):1051-6. PubMed ID: 15883973 [TBL] [Abstract][Full Text] [Related]
13. Partially purified Carica papaya lipase: a versatile biocatalyst for the hydrolytic resolution of (R,S)-2-arylpropionic thioesters in water-saturated organic solvents. Ng IS; Tsai SW Biotechnol Bioeng; 2005 Jul; 91(1):106-13. PubMed ID: 15918166 [TBL] [Abstract][Full Text] [Related]
14. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling. Mathpati AC; Bhanage BM J Biotechnol; 2018 Oct; 283():70-80. PubMed ID: 30031094 [TBL] [Abstract][Full Text] [Related]
15. Determination of absolute configuration of secondary alcohols using lipase-catalyzed kinetic resolutions. Jing Q; Kazlauskas RJ Chirality; 2008 May; 20(5):724-35. PubMed ID: 18278808 [TBL] [Abstract][Full Text] [Related]
16. Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris. Lee GC; Lee LC; Sava V; Shaw JF Biochem J; 2002 Sep; 366(Pt 2):603-11. PubMed ID: 12020350 [TBL] [Abstract][Full Text] [Related]
17. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites. Lee LC; Chen YT; Yen CC; Chiang TC; Tang SJ; Lee GC; Shaw JF J Agric Food Chem; 2007 Jun; 55(13):5103-8. PubMed ID: 17536826 [TBL] [Abstract][Full Text] [Related]
18. Novel chemoenzymatic strategy for the synthesis of enantiomerically pure secondary alcohols with sterically similar substituents. Abad JL; Soldevila C; Camps F; Clapés P J Org Chem; 2003 Jun; 68(13):5351-6. PubMed ID: 12816498 [TBL] [Abstract][Full Text] [Related]
19. Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase. James JJ; Lakshmi BS; Raviprasad V; Ananth MJ; Kangueane P; Gautam P Protein Eng; 2003 Dec; 16(12):1017-24. PubMed ID: 14983082 [TBL] [Abstract][Full Text] [Related]
20. Two conformational states of Candida rugosa lipase. Grochulski P; Li Y; Schrag JD; Cygler M Protein Sci; 1994 Jan; 3(1):82-91. PubMed ID: 8142901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]