BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 8771199)

  • 1. A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols.
    Holmquist M; Haeffner F; Norin T; Hult K
    Protein Sci; 1996 Jan; 5(1):83-8. PubMed ID: 8771199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa.
    Norin M; Haeffner F; Achour A; Norin T; Hult K
    Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.
    Schulz T; Pleiss J; Schmid RD
    Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption.
    Foresti ML; Ferreira ML
    Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid.
    Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W
    Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen-bonding-driven enantioselective resolution against the Kazlauskas rule to afford γ-amino alcohols by Candida rugosa lipase.
    Min B; Park J; Sim YK; Jung S; Kim SH; Song JK; Kim BT; Park SY; Yun J; Park S; Lee H
    Chembiochem; 2015 Jan; 16(1):77-82. PubMed ID: 25477295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmentally friendly, efficient resolution of racemic secondary alcohols by lipase-catalyzed enantioselective transesterification in ionic liquids in the presence of organic bases.
    Wu XM; Xin JY; Sun W; Xia CG
    Chem Biodivers; 2007 Feb; 4(2):183-8. PubMed ID: 17311231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.
    Andrade LH; Barcellos T
    Org Lett; 2009 Jul; 11(14):3052-5. PubMed ID: 19552446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity and enantioselectivity of wildtype and lid mutated Candida rugosa lipase isoform 1 in organic solvents.
    Secundo F; Carrea G; Tarabiono C; Brocca S; Lotti M
    Biotechnol Bioeng; 2004 Apr; 86(2):236-40. PubMed ID: 15052644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-reactivity relationships for the inhibition mechanism at the second alkyl-chain-binding site of cholesterol esterase and lipase.
    Lin G; Shieh CT; Ho HC; Chouhwang JY; Lin WY; Lu CP
    Biochemistry; 1999 Aug; 38(31):9971-81. PubMed ID: 10433704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of alcohol and buffer treatments on the activity and enantioselectivity of Candida rugosa lipase.
    Takaç S; Unlü AE
    Prep Biochem Biotechnol; 2009; 39(2):124-41. PubMed ID: 19291575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B.
    Magnusson AO; Rotticci-Mulder JC; Santagostino A; Hult K
    Chembiochem; 2005 Jun; 6(6):1051-6. PubMed ID: 15883973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partially purified Carica papaya lipase: a versatile biocatalyst for the hydrolytic resolution of (R,S)-2-arylpropionic thioesters in water-saturated organic solvents.
    Ng IS; Tsai SW
    Biotechnol Bioeng; 2005 Jul; 91(1):106-13. PubMed ID: 15918166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling.
    Mathpati AC; Bhanage BM
    J Biotechnol; 2018 Oct; 283():70-80. PubMed ID: 30031094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of absolute configuration of secondary alcohols using lipase-catalyzed kinetic resolutions.
    Jing Q; Kazlauskas RJ
    Chirality; 2008 May; 20(5):724-35. PubMed ID: 18278808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris.
    Lee GC; Lee LC; Sava V; Shaw JF
    Biochem J; 2002 Sep; 366(Pt 2):603-11. PubMed ID: 12020350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites.
    Lee LC; Chen YT; Yen CC; Chiang TC; Tang SJ; Lee GC; Shaw JF
    J Agric Food Chem; 2007 Jun; 55(13):5103-8. PubMed ID: 17536826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel chemoenzymatic strategy for the synthesis of enantiomerically pure secondary alcohols with sterically similar substituents.
    Abad JL; Soldevila C; Camps F; Clapés P
    J Org Chem; 2003 Jun; 68(13):5351-6. PubMed ID: 12816498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase.
    James JJ; Lakshmi BS; Raviprasad V; Ananth MJ; Kangueane P; Gautam P
    Protein Eng; 2003 Dec; 16(12):1017-24. PubMed ID: 14983082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two conformational states of Candida rugosa lipase.
    Grochulski P; Li Y; Schrag JD; Cygler M
    Protein Sci; 1994 Jan; 3(1):82-91. PubMed ID: 8142901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.