BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8771202)

  • 1. Improving protein secondary structure prediction with aligned homologous sequences.
    Di Francesco V; Garnier J; Munson PJ
    Protein Sci; 1996 Jan; 5(1):106-13. PubMed ID: 8771202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%.
    Mehta PK; Heringa J; Argos P
    Protein Sci; 1995 Dec; 4(12):2517-25. PubMed ID: 8580842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of gapped positions in multiple sequence alignments on secondary structure prediction methods.
    Simossis VA; Heringa J
    Comput Biol Chem; 2004 Dec; 28(5-6):351-66. PubMed ID: 15556476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. II. Secondary structures.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):693-708. PubMed ID: 8182744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The limits of protein secondary structure prediction accuracy from multiple sequence alignment.
    Russell RB; Barton GJ
    J Mol Biol; 1993 Dec; 234(4):951-7. PubMed ID: 8263941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein secondary structure prediction using local alignments.
    Salamov AA; Solovyev VV
    J Mol Biol; 1997 Apr; 268(1):31-6. PubMed ID: 9149139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaps in structurally similar proteins: towards improvement of multiple sequence alignment.
    Wrabl JO; Grishin NV
    Proteins; 2004 Jan; 54(1):71-87. PubMed ID: 14705025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conservation of polyproline II helices in homologous proteins: implications for structure prediction by model building.
    Adzhubei AA; Sternberg MJ
    Protein Sci; 1994 Dec; 3(12):2395-410. PubMed ID: 7756993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C; Pollastri G
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast structure alignment for protein databank searching.
    Orengo CA; Brown NP; Taylor WR
    Proteins; 1992 Oct; 14(2):139-67. PubMed ID: 1409565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of analogous and homologous protein folds: analysis of sequence and structure conservation.
    Russell RB; Saqi MA; Sayle RA; Bates PA; Sternberg MJ
    J Mol Biol; 1997 Jun; 269(3):423-39. PubMed ID: 9199410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining prediction of secondary structure and solvent accessibility in proteins.
    Adamczak R; Porollo A; Meller J
    Proteins; 2005 May; 59(3):467-75. PubMed ID: 15768403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Addressing the issue of sequence-to-structure alignments in comparative modeling of CASP3 target proteins.
    Venclovas C; Ginalski K; Fidelis K
    Proteins; 1999; Suppl 3():73-80. PubMed ID: 10526355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using evolutionary trees in protein secondary structure prediction and other comparative sequence analyses.
    Goldman N; Thorne JL; Jones DT
    J Mol Biol; 1996 Oct; 263(2):196-208. PubMed ID: 8913301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and prediction of functional sub-types from protein sequence alignments.
    Hannenhalli SS; Russell RB
    J Mol Biol; 2000 Oct; 303(1):61-76. PubMed ID: 11021970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of protein secondary structure content for the twilight zone sequences.
    Homaeian L; Kurgan LA; Ruan J; Cios KJ; Chen K
    Proteins; 2007 Nov; 69(3):486-98. PubMed ID: 17623861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction.
    King RD; Sternberg MJ
    Protein Sci; 1996 Nov; 5(11):2298-310. PubMed ID: 8931148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DPANN: improved sequence to structure alignments following fold recognition.
    Reinhardt A; Eisenberg D
    Proteins; 2004 Aug; 56(3):528-38. PubMed ID: 15229885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein fold recognition by prediction-based threading.
    Rost B; Schneider R; Sander C
    J Mol Biol; 1997 Jul; 270(3):471-80. PubMed ID: 9237912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.