BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 8771234)

  • 41. VAMP/synaptobrevin cleavage by tetanus and botulinum neurotoxins is strongly enhanced by acidic liposomes.
    Caccin P; Rossetto O; Rigoni M; Johnson E; Schiavo G; Montecucco C
    FEBS Lett; 2003 May; 542(1-3):132-6. PubMed ID: 12729912
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synaptobrevin/vesicle-associated membrane protein (VAMP) of Aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F.
    Yamasaki S; Hu Y; Binz T; Kalkuhl A; Kurazono H; Tamura T; Jahn R; Kandel E; Niemann H
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4688-92. PubMed ID: 8197120
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2.
    Yamasaki S; Binz T; Hayashi T; Szabo E; Yamasaki N; Eklund M; Jahn R; Niemann H
    Biochem Biophys Res Commun; 1994 Apr; 200(2):829-35. PubMed ID: 7910017
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Botulinum neurotoxin E-insensitive mutants of SNAP-25 fail to bind VAMP but support exocytosis.
    Washbourne P; Bortoletto N; Graham ME; Wilson MC; Burgoyne RD; Montecucco C
    J Neurochem; 1999 Dec; 73(6):2424-33. PubMed ID: 10582602
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clostridial neurotoxins: mechanism of SNARE cleavage and outlook on potential substrate specificity reengineering.
    Binz T; Sikorra S; Mahrhold S
    Toxins (Basel); 2010 Apr; 2(4):665-82. PubMed ID: 22069605
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular aspects of tetanus and botulinum neurotoxin poisoning.
    Ahnert-Hilger G; Bigalke H
    Prog Neurobiol; 1995 May; 46(1):83-96. PubMed ID: 7568911
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction.
    Rummel A; Mahrhold S; Bigalke H; Binz T
    Mol Microbiol; 2004 Feb; 51(3):631-43. PubMed ID: 14731268
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Tetanus and botulinum toxins].
    Oguma K; Sugimoto N
    Tanpakushitsu Kakusan Koso; 2001 Mar; 46(4 Suppl):484-90. PubMed ID: 11268650
    [No Abstract]   [Full Text] [Related]  

  • 49. Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: implications for dual substrate specificity.
    Jin R; Sikorra S; Stegmann CM; Pich A; Binz T; Brunger AT
    Biochemistry; 2007 Sep; 46(37):10685-93. PubMed ID: 17718519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clostridial neurotoxins: from toxins to therapeutic tools?
    Niemann H; Binz T; Grebenstein O; Kurazono H; Thierer J; Mochida S; Poulain B; Tauc L
    Behring Inst Mitt; 1991 Jul; (89):153-62. PubMed ID: 1930094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons.
    Pirazzini M; Rossetto O; Bolognese P; Shone CC; Montecucco C
    Cell Microbiol; 2011 Nov; 13(11):1731-43. PubMed ID: 21790947
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Botulinum and tetanus neurotoxins: emerging tools for the study of membrane fusion.
    Jahn R; Hanson PI; Otto H; Ahnert-Hilger G
    Cold Spring Harb Symp Quant Biol; 1995; 60():329-35. PubMed ID: 8824406
    [No Abstract]   [Full Text] [Related]  

  • 53. Cytotoxicity of botulinum neurotoxins reveals a direct role of syntaxin 1 and SNAP-25 in neuron survival.
    Peng L; Liu H; Ruan H; Tepp WH; Stoothoff WH; Brown RH; Johnson EA; Yao WD; Zhang SC; Dong M
    Nat Commun; 2013; 4():1472. PubMed ID: 23403573
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The in vitro detection of botulinum neurotoxin-cleaved endogenous VAMP is epitope-dependent.
    Gray B; Cadd V; Elliott M; Beard M
    Toxicol In Vitro; 2018 Apr; 48():255-261. PubMed ID: 29373835
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predictions of secondary structure and solvent accessibility of the light chain of the clostridial neurotoxins.
    Lebeda FJ; Olson MA
    J Nat Toxins; 1998 Oct; 7(3):227-38. PubMed ID: 9783261
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Tetanus and botulinum toxins are zinc metallopeptidases: molecular mechanisms and inhibition of their neurotoxicity].
    Cornille F; Roques BP
    J Soc Biol; 1999; 193(6):509-16. PubMed ID: 10783709
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Botulinum neurotoxins: mechanism of action and therapeutic applications.
    Montecucco C; Schiavo G; Tugnoli V; de Grandis D
    Mol Med Today; 1996 Oct; 2(10):418-24. PubMed ID: 8897436
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A single mutation in the recombinant light chain of tetanus toxin abolishes its proteolytic activity and removes the toxicity seen after reconstitution with native heavy chain.
    Li Y; Foran P; Fairweather NF; de Paiva A; Weller U; Dougan G; Dolly JO
    Biochemistry; 1994 Jun; 33(22):7014-20. PubMed ID: 7911329
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of specific domains in botulinum and tetanus neurotoxins.
    Singh BR
    Toxicon; 1990; 28(8):992-6. PubMed ID: 2127868
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells.
    Galli T; Zahraoui A; Vaidyanathan VV; Raposo G; Tian JM; Karin M; Niemann H; Louvard D
    Mol Biol Cell; 1998 Jun; 9(6):1437-48. PubMed ID: 9614185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.