These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 8772429)

  • 41. Dual action of phosphonoformic acid on Na(+)-phosphate cotransport in opossum kidney cells.
    Loghman-Adham M; Dousa TP
    Am J Physiol; 1992 Aug; 263(2 Pt 2):F301-10. PubMed ID: 1380774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Posttranslational alanine trans-stimulation of zwitterionic amino acid transport systems in human intestinal Caco-2 cells.
    Pan M; Souba WW; Wolfgang CL; Karinch AM; Stevens BR
    J Surg Res; 2002 May; 104(1):63-9. PubMed ID: 11971679
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adaptation of phosphate transport in phosphate-deprived LLC-PK1 cells.
    Caverzasio J; Brown CD; Biber J; Bonjour JP; Murer H
    Am J Physiol; 1985 Jan; 248(1 Pt 2):F122-7. PubMed ID: 3970160
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sodium-hydrogen exchange system in LLC-PK1 epithelium.
    Moran A
    Am J Physiol; 1987 Jan; 252(1 Pt 1):C63-7. PubMed ID: 3028147
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic and energetic aspects of the inhibition of taurocholate uptake by Na+-dependent amino acids: studies in rat liver plasma membrane vesicles.
    Blitzer BL; Bueler RL
    Am J Physiol; 1985 Jul; 249(1 Pt 1):G120-4. PubMed ID: 4014461
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photoinactivation of sodium-potassium-chloride cotransport in LLC-PK1/Cl 4 cells by bumetanide.
    Amsler K; Kinne R
    Am J Physiol; 1986 May; 250(5 Pt 1):C799-806. PubMed ID: 3010731
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heterogeneity of amino acid transport in horse erythrocytes: a detailed kinetic analysis of inherited transport variation.
    Fincham DA; Mason DK; Paterson JY; Young JD
    J Physiol; 1987 Aug; 389():385-409. PubMed ID: 3681732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Concentrative uptake of alanine in hepatocytes from fed and fasted rats.
    Kristensen LO; Sestoft L; Folke M
    Am J Physiol; 1983 May; 244(5):G491-500. PubMed ID: 6846545
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generalized kinetic analysis of ion-driven cotransport systems: II. Random ligand binding as a simple explanation for non-michaelian kinetics.
    Sanders D
    J Membr Biol; 1986; 90(1):67-87. PubMed ID: 2422385
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational analysis of models for cotransport.
    Harrison DA; Rowe GW; Lumsden CJ; Silverman M
    Biochim Biophys Acta; 1984 Jul; 774(1):1-10. PubMed ID: 6539622
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic analysis of a family of cotransport models.
    Turner RJ
    Biochim Biophys Acta; 1981 Dec; 649(2):269-80. PubMed ID: 7317398
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimizing the Substrate Uptake Rate of Solute Carriers.
    Schicker K; Farr CV; Boytsov D; Freissmuth M; Sandtner W
    Front Physiol; 2022; 13():817886. PubMed ID: 35185619
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative analysis of membrane and secretory protein processing and intracellular transport.
    Noe DA; Delenick JC
    J Cell Sci; 1989 Mar; 92 ( Pt 3)():449-59. PubMed ID: 2592450
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Steady-state kinetic characterization of the mouse B(0)AT1 sodium-dependent neutral amino acid transporter.
    Camargo SM; Makrides V; Virkki LV; Forster IC; Verrey F
    Pflugers Arch; 2005 Nov; 451(2):338-48. PubMed ID: 16133263
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A model for the kinetic mechanism of sodium-coupled L-alanine transport in LLC-PK1 cells.
    Wilson JJ; Randles J; Kimmich GA
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C49-56. PubMed ID: 8772429
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Na+-coupled alanine transport in LLC-PK1 cells: the relationship between the Km for Na+ at low [Alanine] and potential dependence for the system.
    Wilson JJ; Randles J; Kimmich GA
    J Membr Biol; 1998 Oct; 165(3):275-82. PubMed ID: 9767681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Na(+)-coupled alanine transport in LLC-PK1 cells.
    Kimmich GA; Randles J; Wilson J
    Am J Physiol; 1994 Oct; 267(4 Pt 1):C1119-29. PubMed ID: 7943275
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: II. Comparison with transport models.
    Jauch P; Läuger P
    J Membr Biol; 1986; 94(2):117-27. PubMed ID: 3560198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism of mercurial inhibition of sodium-coupled alanine uptake in liver plasma membrane vesicles from Raja erinacea.
    Sellinger M; Ballatori N; Boyer JL
    Toxicol Appl Pharmacol; 1991 Feb; 107(2):369-76. PubMed ID: 1994517
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.