BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8772513)

  • 1. 2-Deoxyglucose transport and metabolism in Caco-2 cells.
    Bissonnette P; Gagné H; Blais A; Berteloot A
    Am J Physiol; 1996 Jan; 270(1 Pt 1):G153-62. PubMed ID: 8772513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic separation and characterization of three sugar transport modes in Caco-2 cells.
    Bissonnette P; Gagné H; Coady MJ; Benabdallah K; Lapointe JY; Berteloot A
    Am J Physiol; 1996 May; 270(5 Pt 1):G833-43. PubMed ID: 8967496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction among glucose transport, hexokinase, and glucose-6-phosphatase with respect to 3H-2-deoxyglucose retention in murine tumor models.
    Nelson CA; Wang JQ; Leav I; Crane PD
    Nucl Med Biol; 1996 May; 23(4):533-41. PubMed ID: 8832712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refinement of the kinetic model of the 2-[14C]deoxyglucose method to incorporate effects of intracellular compartmentation in brain.
    Schmidt K; Lucignani G; Mori K; Jay T; Palombo E; Nelson T; Pettigrew K; Holden JE; Sokoloff L
    J Cereb Blood Flow Metab; 1989 Jun; 9(3):290-303. PubMed ID: 2541146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suitability of 2-deoxyglucose for in vitro measurement of glucose transport activity in skeletal muscle.
    Hansen PA; Gulve EA; Holloszy JO
    J Appl Physiol (1985); 1994 Feb; 76(2):979-85. PubMed ID: 8175614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of glucose transport activity as the rate-limiting step of 2-deoxyglucose uptake in tumor cells in vitro.
    Waki A; Kato H; Yano R; Sadato N; Yokoyama A; Ishii Y; Yonekura Y; Fujibayashi Y
    Nucl Med Biol; 1998 Oct; 25(7):593-7. PubMed ID: 9804039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement and modeling of glucose-6-phosphatase in pancreatic islets.
    Sweet IR; Najafi H; Li G; Grodberg J; Matschinsky FM
    Am J Physiol; 1997 Apr; 272(4 Pt 1):E696-711. PubMed ID: 9142893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-Deoxy-D-glucose uptake in cultured human muscle cells.
    Jacobs AE; Oosterhof A; Veerkamp JH
    Biochim Biophys Acta; 1990 Mar; 1051(3):230-6. PubMed ID: 2310773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulation and importance of glucose uptake in the isolated Atlantic cod heart: rate-limiting steps and effects of hypoxia.
    Clow KA; Rodnick KJ; MacCormack TJ; Driedzic WR
    J Exp Biol; 2004 May; 207(Pt 11):1865-74. PubMed ID: 15107441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose transport and phosphorylation in single cardiac myocytes: rate-limiting steps in glucose metabolism.
    Manchester J; Kong X; Nerbonne J; Lowry OH; Lawrence JC
    Am J Physiol; 1994 Mar; 266(3 Pt 1):E326-33. PubMed ID: 8166252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negligible glucose-6-phosphatase activity in cultured astroglia.
    Gotoh J; Itoh Y; Kuang TY; Cook M; Law MJ; Sokoloff L
    J Neurochem; 2000 Apr; 74(4):1400-8. PubMed ID: 10737595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic effects of 2-deoxy-D-glucose in isolated fat cells.
    Chandramouli V; Carter JR
    Biochim Biophys Acta; 1977 Feb; 496(2):278-91. PubMed ID: 836900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors.
    Graff JC; Wohlhueter RM; Plagemann PG
    J Cell Physiol; 1978 Aug; 96(2):171-88. PubMed ID: 670303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Glucose Utilization Rates in Cultured Astrocytes and Neurons with [
    Dienel GA; Cruz NF; Sokoloff L; Driscoll BF
    Neurochem Res; 2017 Jan; 42(1):50-63. PubMed ID: 26141225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complexities underlying the quantitative determination of myocardial glucose uptake with 2-deoxyglucose.
    Doenst T; Taegtmeyer H
    J Mol Cell Cardiol; 1998 Aug; 30(8):1595-604. PubMed ID: 9737945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of 2-halogen substituted D-glucose analogs in blocking glycolysis and killing "hypoxic tumor cells".
    Lampidis TJ; Kurtoglu M; Maher JC; Liu H; Krishan A; Sheft V; Szymanski S; Fokt I; Rudnicki WR; Ginalski K; Lesyng B; Priebe W
    Cancer Chemother Pharmacol; 2006 Dec; 58(6):725-34. PubMed ID: 16555088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-Deoxy-D-glucose uptake by rat granular pneumocytes in primary culture.
    Kerr JS; Reicherter J; Fisher AB
    Am J Physiol; 1982 Jul; 243(1):C14-9. PubMed ID: 6283906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of 2-deoxy-D-glucose on the glucose metabolism in Saccharomyces cerevisiae studied by multinuclear-NMR spectroscopy and biochemical methods.
    Hervé M; Wietzerbin J; Lebourguais O; Tran-Dinh S
    Biochimie; 1992 Dec; 74(12):1103-15. PubMed ID: 1363373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin does not change the intracellular distribution of hexokinase in rat heart.
    Doenst T; Han Q; Goodwin GW; Guthrie PH; Taegtmeyer H
    Am J Physiol; 1998 Oct; 275(4):E558-67. PubMed ID: 9755073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that activation of 2-deoxy-D-glucose transport in rat thymocyte suspensions results from enhanced coupling between transport and hexokinase activity.
    Naftalin RJ; Rist RJ
    Biochem J; 1989 May; 260(1):143-52. PubMed ID: 2775177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.