These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 8773179)
1. An in vitro investigation of the reductive metabolism of chloroform. Testai E; Di Marzio S; di Domenico A; Piccardi A; Vittozzi L Arch Toxicol; 1995; 70(2):83-8. PubMed ID: 8773179 [TBL] [Abstract][Full Text] [Related]
2. The regioselective binding of CHCl3 reactive intermediates to microsomal phospholipids. De Biasi A; Sbraccia M; Keizer J; Testai E; Vittozzi L Chem Biol Interact; 1992 Dec; 85(2-3):229-42. PubMed ID: 1493611 [TBL] [Abstract][Full Text] [Related]
3. Effect of ethanol on CHCl3 metabolism in hepatic microsomes from Osborne-Mendel rats. Testai E; Gemma S; Gervasi P; Menicagli S; Vittozzi L Environ Health Perspect; 1994 Nov; 102 Suppl 9(Suppl 9):25-30. PubMed ID: 7698079 [TBL] [Abstract][Full Text] [Related]
4. The role of different cytochrome P450 isoforms in in vitro chloroform metabolism. Testai E; De Curtis V; Gemma S; Fabrizi L; Gervasi P; Vittozzi L J Biochem Toxicol; 1996; 11(6):305-12. PubMed ID: 9176742 [TBL] [Abstract][Full Text] [Related]
5. In vivo production of different chloroform metabolites: effect of phenobarbital and buthionine sulfoximine pretreatment. Gemma S; Sbraccia M; Testai E; Vittozzi L Environ Health Perspect; 1994 Nov; 102 Suppl 9(Suppl 9):45-7. PubMed ID: 7698083 [TBL] [Abstract][Full Text] [Related]
6. Biochemical alterations elicited in rat liver microsomes by oxidation and reduction products of chloroform metabolism. Testai E; Vittozzi L Chem Biol Interact; 1986 Sep; 59(2):157-71. PubMed ID: 3769050 [TBL] [Abstract][Full Text] [Related]
7. The contribution of electrophilic and radicalic intermediates to phospholipid adducts formed by halomethanes in vivo. De Curtis V; Gemma S; Sbraccia M; Testai E; Vittozzi L J Biochem Toxicol; 1994 Dec; 9(6):305-10. PubMed ID: 7891366 [TBL] [Abstract][Full Text] [Related]
8. Suicidal inactivation of haemoproteins by reductive metabolites of halomethanes: a structure-activity relationship study. Manno M; Tolando R; Ferrara R; Rezzadore M; Cazzaro S Toxicology; 1995 Jun; 100(1-3):175-83. PubMed ID: 7624875 [TBL] [Abstract][Full Text] [Related]
9. Bioactivation of chloroform in hepatic microsomes from rodent strains susceptible or resistant to CHCl3 carcinogenicity. Testai E; Gemma S; Vittozzi L Toxicol Appl Pharmacol; 1992 Jun; 114(2):197-203. PubMed ID: 1609411 [TBL] [Abstract][Full Text] [Related]
10. Activation of chloroform and related trihalomethanes to free radical intermediates in isolated hepatocytes and in the rat in vivo as detected by the ESR-spin trapping technique. Tomasi A; Albano E; Biasi F; Slater TF; Vannini V; Dianzani MU Chem Biol Interact; 1985 Nov; 55(3):303-16. PubMed ID: 3000632 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of chloroform nephrotoxicity. III. Renal and hepatic microsomal metabolism of chloroform in mice. Smith JH; Hook JB Toxicol Appl Pharmacol; 1984 May; 73(3):511-24. PubMed ID: 6719466 [TBL] [Abstract][Full Text] [Related]
12. Multiple activation of chloroform in kidney microsomes from male and female DBA/2J mice. Ade P; Guastadisegni C; Testai E; Vittozzi L J Biochem Toxicol; 1994 Dec; 9(6):289-95. PubMed ID: 7891364 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of the suicidal, reductive inactivation of microsomal cytochrome P-450 by carbon tetrachloride. Manno M; De Matteis F; King LJ Biochem Pharmacol; 1988 May; 37(10):1981-90. PubMed ID: 3377806 [TBL] [Abstract][Full Text] [Related]
14. Different pathways of chloroform metabolism. Testai E; Vittozzi L Arch Toxicol Suppl; 1984; 7():278-81. PubMed ID: 6595992 [TBL] [Abstract][Full Text] [Related]
15. A pharmacokinetic model of anaerobic in vitro carbon tetrachloride metabolism. Andersen NJ; Waller CL; Adamovic JB; Thompson DJ; Allis JW; Andersen ME; Simmons JE Chem Biol Interact; 1996 Jun; 101(1):13-31. PubMed ID: 8665616 [TBL] [Abstract][Full Text] [Related]
16. Limited reactivity of formyl chloride with glutathione and relevance to metabolism and toxicity of dichloromethane. Watanabe K; Guengerich FP Chem Res Toxicol; 2006 Aug; 19(8):1091-6. PubMed ID: 16918250 [TBL] [Abstract][Full Text] [Related]
17. A comparative study on the irreversible binding of labeled halothane trichlorofluoromethane, chloroform, and carbon tetrachloride to hepatic protein and lipids in vitro and in vivo. Uehleke H; Werner T Arch Toxicol; 1975 Dec; 34(4):289-308. PubMed ID: 3152 [TBL] [Abstract][Full Text] [Related]
18. Chloroform bioactivation by microsomes from colonic and ileal mucosa of rat and man. Testai E; Keizer J; Pacifici GM; Vittozzi L Toxicol Lett; 1991 Jun; 57(1):19-27. PubMed ID: 2048158 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the effects of methyl-N-butyl ketone and phenobarbital on rat liver cytochromes P-450 and the metabolism of chloroform to phosgene. Branchflower RV; Schulick RD; George JW; Pohl LR Toxicol Appl Pharmacol; 1983 Dec; 71(3):414-21. PubMed ID: 6658790 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a phospholipid adduct formed in Sprague Dawley rats by chloroform metabolism: NMR studies. Guastadisegni C; Guidoni L; Balduzzi M; Viti V; Di Consiglio E; Vittozzi L J Biochem Mol Toxicol; 1998; 12(2):93-102. PubMed ID: 9443066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]