These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 8773244)

  • 21. Coordinating movement at two joints: a principle of linear covariance.
    Gottlieb GL; Song Q; Hong DA; Almeida GL; Corcos D
    J Neurophysiol; 1996 Apr; 75(4):1760-4. PubMed ID: 8727412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The human arm as a redundant manipulator: the control of path and joint angles.
    Cruse H; Brüwer M
    Biol Cybern; 1987; 57(1-2):137-44. PubMed ID: 3620542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of motor cortex in coordinating multi-joint movements: is it time for a new paradigm?
    Scott SH
    Can J Physiol Pharmacol; 2000 Nov; 78(11):923-33. PubMed ID: 11100941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hand trajectory formation during whole body reaching movements in man.
    Pozzo T; McIntyre J; Cheron G; Papaxanthis C
    Neurosci Lett; 1998 Jan; 240(3):159-62. PubMed ID: 9502228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of limb dynamics in normal subjects and patients without proprioception.
    Sainburg RL; Ghilardi MF; Poizner H; Ghez C
    J Neurophysiol; 1995 Feb; 73(2):820-35. PubMed ID: 7760137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the relationship between joint angular velocity and motor cortical discharge during reaching.
    Reina GA; Moran DW; Schwartz AB
    J Neurophysiol; 2001 Jun; 85(6):2576-89. PubMed ID: 11387402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinematic analysis of reaching in the cat.
    Martin JH; Cooper SE; Ghez C
    Exp Brain Res; 1995; 102(3):379-92. PubMed ID: 7737385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss of proprioception produces deficits in interjoint coordination.
    Sainburg RL; Poizner H; Ghez C
    J Neurophysiol; 1993 Nov; 70(5):2136-47. PubMed ID: 8294975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inter-joint coupling and joint angle synergies of human catching movements.
    Bockemühl T; Troje NF; Dürr V
    Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of kinematic redundancy in adaptation of reaching.
    Yang JF; Scholz JP; Latash ML
    Exp Brain Res; 2007 Jan; 176(1):54-69. PubMed ID: 16874517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling 3D object manipulation: synchronous single-axis joint rotations?
    Breteler MD; Meulenbroek RG
    Exp Brain Res; 2006 Jan; 168(3):395-409. PubMed ID: 16237523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Postural control of three-dimensional prehension movements.
    Desmurget M; Prablanc C
    J Neurophysiol; 1997 Jan; 77(1):452-64. PubMed ID: 9120586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Path curvature in workspace and in joint space: evidence for coexisting coordinative rules in aiming.
    Van Thiel E; Meulenbroek RG; Hulstijn W
    Motor Control; 1998 Oct; 2(4):331-51. PubMed ID: 9758885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences in control of limb dynamics during dominant and nondominant arm reaching.
    Sainburg RL; Kalakanis D
    J Neurophysiol; 2000 May; 83(5):2661-75. PubMed ID: 10805666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of movement direction on joint torque covariation.
    Shemmell J; Hasan Z; Gottlieb GL; Corcos DM
    Exp Brain Res; 2007 Jan; 176(1):150-8. PubMed ID: 16850324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel muscle patterns for reaching after cervical spinal cord injury: a case for motor redundancy.
    Koshland GF; Galloway JC; Farley B
    Exp Brain Res; 2005 Jul; 164(2):133-47. PubMed ID: 16028034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of kinematic invariances of multijoint reaching movement.
    Goodman SR; Gottlieb GL
    Biol Cybern; 1995 Sep; 73(4):311-22. PubMed ID: 7578472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of dominant hand to non-dominant hand in conduction of reaching task from 3D kinematic data: Trade-off between successful rate and movement efficiency.
    Xiao X; Hu HJ; Li LF; Li L
    Math Biosci Eng; 2019 Feb; 16(3):1611-1624. PubMed ID: 30947435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional reaching tasks: effect of reaching height and width on upper limb kinematics and muscle activity.
    Vandenberghe A; Levin O; De Schutter J; Swinnen S; Jonkers I
    Gait Posture; 2010 Oct; 32(4):500-7. PubMed ID: 20729085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.