These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 8773493)
1. Beta-adrenergic regulation of voltage-dependent calcium currents in cultured skeletal myocytes of the frog Rana temporaria. Lukyanenko V; Katina IE; Nasledov GA; Terentyev DA Gen Physiol Biophys; 1995 Dec; 14(6):515-23. PubMed ID: 8773493 [TBL] [Abstract][Full Text] [Related]
2. Voltage dependent fast calcium current in cultured skeletal myocytes of the frog Rana temporaria. Lukyanenko V; Katina IE; Nasledov GA Gen Physiol Biophys; 1994 Jun; 13(3):237-46. PubMed ID: 7835684 [TBL] [Abstract][Full Text] [Related]
3. Voltage dependent ionic currents in frog cultured skeletal myocytes. Lukyanenko VI; Katina IE; Nasledov GA; Lonsky AV Gen Physiol Biophys; 1993 Jun; 12(3):231-47. PubMed ID: 8224780 [TBL] [Abstract][Full Text] [Related]
4. Pharmacological analysis of voltage-dependent potassium currents in cultured skeletal myocytes of the frog Rana temporaria. Lukyanenko V; Katina IE; Nasledov GA; Terentyev DA Gen Physiol Biophys; 1995 Dec; 14(6):525-34. PubMed ID: 8773494 [TBL] [Abstract][Full Text] [Related]
5. Sustained beta-adrenergic stimulation increased L-type Ca2+ channel expression in cultured quiescent ventricular myocytes. Akuzawa-Tateyama M; Tateyama M; Ochi R J Physiol Sci; 2006 Apr; 56(2):165-72. PubMed ID: 16839451 [TBL] [Abstract][Full Text] [Related]
6. [The potential-dependent incoming ionic currents of myoblasts from the frog Rana temporaria developing in culture]. Luk'ianenko VI; Nasledov GA; Katina IE; Lonskiĭ AV Zh Evol Biokhim Fiziol; 1992; 28(1):134-7. PubMed ID: 1326148 [TBL] [Abstract][Full Text] [Related]
7. Beta-2 adrenergic activation of L-type Ca++ current in cardiac myocytes. Skeberdis VA; Jurevicius J; Fischmeister aR J Pharmacol Exp Ther; 1997 Nov; 283(2):452-61. PubMed ID: 9353357 [TBL] [Abstract][Full Text] [Related]
8. Effects of Bay K 8644 on L-type calcium current from newborn rat cardiomyocytes in primary culture. Gomez JP; Fares N; Potreau D J Mol Cell Cardiol; 1996 Oct; 28(10):2217-29. PubMed ID: 8930816 [TBL] [Abstract][Full Text] [Related]
9. Enhanced inhibition of L-type Ca2+ current by beta3-adrenergic stimulation in failing rat heart. Zhang ZS; Cheng HJ; Onishi K; Ohte N; Wannenburg T; Cheng CP J Pharmacol Exp Ther; 2005 Dec; 315(3):1203-11. PubMed ID: 16135702 [TBL] [Abstract][Full Text] [Related]
10. In vivo and in vitro inhibition of the L-type calcium current in isolated guinea-pig cardiomyocytes by the immunosuppressive agent cyclosporin A. Mijares A; Malécot CO; Peineau N; Argibay JA J Mol Cell Cardiol; 1997 Aug; 29(8):2067-76. PubMed ID: 9281439 [TBL] [Abstract][Full Text] [Related]
11. Effects of alpha1-adrenergic stimulation on L-type Ca2+ current in rat ventricular myocytes. Zhang S; Hiraoka M; Hirano Y J Mol Cell Cardiol; 1998 Oct; 30(10):1955-65. PubMed ID: 9799650 [TBL] [Abstract][Full Text] [Related]
12. Modulation of L-type Ca(2+) channel current density and inactivation by beta-adrenergic stimulation during murine cardiac embryogenesis. Nguemo F; Sasse P; Fleischmann BK; Kamanyi A; Schunkert H; Hescheler J; Reppel M Basic Res Cardiol; 2009 May; 104(3):295-306. PubMed ID: 18953481 [TBL] [Abstract][Full Text] [Related]
13. Interaction between autoantibodies against the beta1-adrenoceptor and isoprenaline in enhancing L-type Ca2+ current in rat ventricular myocytes. Christ T; Schindelhauer S; Wettwer E; Wallukat G; Ravens U J Mol Cell Cardiol; 2006 Oct; 41(4):716-23. PubMed ID: 16889792 [TBL] [Abstract][Full Text] [Related]
14. Nitric oxide regulates the calcium current in isolated human atrial myocytes. Kirstein M; Rivet-Bastide M; Hatem S; Bénardeau A; Mercadier JJ; Fischmeister R J Clin Invest; 1995 Feb; 95(2):794-802. PubMed ID: 7860763 [TBL] [Abstract][Full Text] [Related]
15. Alpha 1D L-type Ca(2+)-channel currents: inhibition by a beta-adrenergic agonist and pituitary adenylate cyclase-activating polypeptide (PACAP) in rat pinealocytes. Chik CL; Liu QY; Li B; Klein DC; Zylka M; Kim DS; Chin H; Karpinski E; Ho AK J Neurochem; 1997 Mar; 68(3):1078-87. PubMed ID: 9048753 [TBL] [Abstract][Full Text] [Related]
16. Myocyte response to stimulation of receptors and ion channels. Marsh JD Toxicol Pathol; 1990; 18(4 Pt 1):454-63. PubMed ID: 1982574 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of beta- but not alpha 1-mediated adrenergic responses in isolated hearts and cardiomyocytes by nitric oxide and 8-bromo cyclic GMP. Ebihara Y; Karmazyn M Cardiovasc Res; 1996 Sep; 32(3):622-9. PubMed ID: 8881523 [TBL] [Abstract][Full Text] [Related]
18. Effects of dopexamine hydrochloride on calcium channels in isolated guinea pig ventricular myocytes. Dun W; Zhao RR; Liang Y; Wu BW Methods Find Exp Clin Pharmacol; 1996; 18(6):353-7. PubMed ID: 8892264 [TBL] [Abstract][Full Text] [Related]
19. beta-Adrenergic modulation of prepulse facilitation of L-type calcium channels in rabbit ventricular myocytes. Yamada M Pflugers Arch; 2002 May; 444(1-2):89-98. PubMed ID: 11976920 [TBL] [Abstract][Full Text] [Related]
20. The effects of calcium channel modulators on contractions of tonic frog muscle fibres. Kössler F; Nasledov GA; Shvinka N Gen Physiol Biophys; 1996 Feb; 15(1):37-50. PubMed ID: 8902556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]