These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 8773768)
1. Estimates of the axonal refractory period of midbrain dopamine neurons: their relevance to brain stimulation reward. Anderson RM; Fatigati MD; Rompré PP Brain Res; 1996 Apr; 718(1-2):83-8. PubMed ID: 8773768 [TBL] [Abstract][Full Text] [Related]
2. Physiological measures of conduction velocity and refractory period for putative reward-relevant MFB axons arising in the rostral MFB. Murray B; Shizgal P Physiol Behav; 1996 Mar; 59(3):427-37. PubMed ID: 8700942 [TBL] [Abstract][Full Text] [Related]
3. Electrophysiological evidence that a subset of midbrain dopamine neurons integrate the reward signal induced by electrical stimulation of the posterior mesencephalon. Moisan J; Rompré PP Brain Res; 1998 Mar; 786(1-2):143-52. PubMed ID: 9554987 [TBL] [Abstract][Full Text] [Related]
4. Medial forebrain bundle units in the rat: dependence of refractory period estimates on pulse duration. Shizgal P; Conover K; Schindler D Behav Brain Res; 1991 Feb; 42(2):151-60. PubMed ID: 2059329 [TBL] [Abstract][Full Text] [Related]
5. Comparisons of refractory periods for medial forebrain bundle fibers subserving stimulation-induced feeding and brain stimulation reward: a psychophysical study. Gratton A; Wise RA Brain Res; 1988 Jan; 438(1-2):256-63. PubMed ID: 3257891 [TBL] [Abstract][Full Text] [Related]
6. Behavioral measures of conduction velocity and refractory period for reward-relevant axons in the anterior LH and VTA. Murray B; Shizgal P Physiol Behav; 1996; 59(4-5):643-52. PubMed ID: 8778847 [TBL] [Abstract][Full Text] [Related]
7. Mesencephalic substrate of reward: possible role for lateral pontine tegmental cells. Boye SM; Contant C; Rompré PP Brain Res; 2002 Sep; 949(1-2):188-96. PubMed ID: 12213315 [TBL] [Abstract][Full Text] [Related]
8. The neural substrates for the rewarding and dopamine-releasing effects of medial forebrain bundle stimulation have partially discrepant frequency responses. Cossette MP; Conover K; Shizgal P Behav Brain Res; 2016 Jan; 297():345-58. PubMed ID: 26477378 [TBL] [Abstract][Full Text] [Related]
9. Electrophysiological characteristics of neurons in forebrain regions implicated in self-stimulation of the medial forebrain bundle in the rat. Rompré PP; Shizgal P Brain Res; 1986 Feb; 364(2):338-49. PubMed ID: 3484994 [TBL] [Abstract][Full Text] [Related]
10. Deep brain stimulation of the medial forebrain bundle elevates striatal dopamine concentration without affecting spontaneous or reward-induced phasic release. Klanker M; Feenstra M; Willuhn I; Denys D Neuroscience; 2017 Nov; 364():82-92. PubMed ID: 28918253 [TBL] [Abstract][Full Text] [Related]
11. Psychophysical inference of frequency-following fidelity in the neural substrate for brain stimulation reward. Solomon RB; Trujillo-Pisanty I; Conover K; Shizgal P Behav Brain Res; 2015 Oct; 292():327-41. PubMed ID: 26057357 [TBL] [Abstract][Full Text] [Related]
12. Absolute and relative refractory periods of the substrates for lateral hypothalamic and ventral midbrain self-stimulation. Bielajew C; Lapointe M; Kiss I; Shizgal P Physiol Behav; 1982 Jan; 28(1):125-32. PubMed ID: 6979053 [TBL] [Abstract][Full Text] [Related]
13. Lesions of midline midbrain structures leave medial forebrain bundle self-stimulation intact. Waraczynski M; Perkins M; Acheson A Behav Brain Res; 1999 Sep; 103(2):175-84. PubMed ID: 10513585 [TBL] [Abstract][Full Text] [Related]
14. The Convergence Model of Brain Reward Circuitry: Implications for Relief of Treatment-Resistant Depression by Deep-Brain Stimulation of the Medial Forebrain Bundle. Pallikaras V; Shizgal P Front Behav Neurosci; 2022; 16():851067. PubMed ID: 35431828 [TBL] [Abstract][Full Text] [Related]
15. Two substrates for medial forebrain bundle self-stimulation: myelinated axons and dopamine axons. Yeomans JS Neurosci Biobehav Rev; 1989; 13(2-3):91-8. PubMed ID: 2682408 [TBL] [Abstract][Full Text] [Related]
17. Dopamine Transporter Localization in Medial Forebrain Bundle Axons Indicates Its Long-Range Transport Primarily by Membrane Diffusion with a Limited Contribution of Vesicular Traffic on Retromer-Positive Compartments. Bagalkot TR; Block ER; Bucchin K; Balcita-Pedicino JJ; Calderon M; Sesack SR; Sorkin A J Neurosci; 2021 Jan; 41(2):234-250. PubMed ID: 33234607 [TBL] [Abstract][Full Text] [Related]
18. Diametrically opposite effects of estrogen on the excitability of female rat medial and lateral preoptic neurons with axons to the midbrain locomotor region. Takeo T; Sakuma Y Neurosci Res; 1995 Mar; 22(1):73-80. PubMed ID: 7792083 [TBL] [Abstract][Full Text] [Related]
19. Forebrain neurons driven by rewarding stimulation of the medial forebrain bundle in the rat: comparison of psychophysical and electrophysiological estimates of refractory periods. Shizgal P; Schindler D; Rompré PP Brain Res; 1989 Oct; 499(2):234-48. PubMed ID: 2804677 [TBL] [Abstract][Full Text] [Related]
20. Ventrolateral medullary neurons projecting to the medial preoptic/anterior hypothalamic area through the medial forebrain bundle: an electrophysiological study in the rat. Kaba H; Saito H; Otsuka K; Seto K Exp Brain Res; 1986; 63(2):369-74. PubMed ID: 3489639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]