These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8773778)

  • 1. Calcium mobilization from the intracellular mitochondrial and nonmitochondrial stores of the rat cerebellum.
    Huang WC; Chueh SH
    Brain Res; 1996 Apr; 718(1-2):151-8. PubMed ID: 8773778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS; Joshi PG; Joshi NB
    Neurochem Res; 2000 Dec; 25(12):1527-36. PubMed ID: 11152381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of ryanodine receptors in sphingosylphosphorylcholine-induced calcium release from brain microsomes.
    Dettbarn C; Betto R; Salviati G; Sabbadini R; Palade P
    Brain Res; 1995 Jan; 669(1):79-85. PubMed ID: 7712168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ signaling induced by sphingosylphosphorylcholine and sphingosine 1-phosphate via distinct mechanisms in rat glomerular mesangial cells.
    Chen PF; Chin TY; Chueh SH
    Kidney Int; 1998 Nov; 54(5):1470-83. PubMed ID: 9844123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arachidonic acid enhances intracellular [Ca2+]i increase and mitochondrial depolarization induced by glutamate in cerebellar granule cells.
    Surin AM; Bolshakov AP; Mikhailova MM; Sorokina EG; Senilova YE; Pinelis VG; Khodorov BI
    Biochemistry (Mosc); 2006 Aug; 71(8):864-70. PubMed ID: 16978149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingolipid derivatives modulate intracellular Ca2+ in rat synaptosomes.
    Miguel BG; Calcerrada MC; Catalán RE; Martínez AM
    Acta Neurobiol Exp (Wars); 2001; 61(2):113-7. PubMed ID: 11512408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingosylphosphorylcholine-induced vasoconstriction of pulmonary artery: activation of non-store-operated Ca2+ entry.
    Thomas GD; Snetkov VA; Patel R; Leach RM; Aaronson PI; Ward JP
    Cardiovasc Res; 2005 Oct; 68(1):56-64. PubMed ID: 15950201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular calcium mobilization and phospholipid degradation in sphingosylphosphorylcholine-stimulated human airway epithelial cells.
    Orlati S; Porcelli AM; Hrelia S; Lorenzini A; Rugolo M
    Biochem J; 1998 Sep; 334 ( Pt 3)(Pt 3):641-9. PubMed ID: 9729473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium.
    Ghosh TK; Bian J; Gill DL
    J Biol Chem; 1994 Sep; 269(36):22628-35. PubMed ID: 8077214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of tetrahexyl ammonium cations (THA+) on inositol 1,4,5-trisphosphate-induced calcium release from porcine cerebellar microsomes: THA+ can induce calcium release selectively from the InsP3-sensitive calcium stores.
    Sayers LG; Michelangeli F
    Biochim Biophys Acta; 1993 Oct; 1152(1):177-83. PubMed ID: 8399297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering.
    Kiedrowski L; Costa E
    Mol Pharmacol; 1995 Jan; 47(1):140-7. PubMed ID: 7838122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caffeine- and ryanodine-sensitive Ca2+ stores of canine cerebrum and cerebellum neurons.
    Mészáros LG; Volpe P
    Am J Physiol; 1991 Dec; 261(6 Pt 1):C1048-54. PubMed ID: 1722642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysosphingomyelin-elicited Ca2+ mobilization from rat brain microsomes.
    Furuya S; Kurono S; Hirabayashi Y
    J Lipid Mediat Cell Signal; 1996 Sep; 14(1-3):303-11. PubMed ID: 8906576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swelling-induced Ca2+ release from intracellular calcium stores in rat submandibular gland acinar cells.
    Park K; Lee S; Elliott AC; Kim JS; Lee JH
    J Membr Biol; 2002 Apr; 186(3):165-76. PubMed ID: 12148843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Modelling of Mg2+, ATP-dependent mitochondrial Ca ions transport in smooth muscle cells using protonophore CCCP-sensitive fluorescent tetracycline].
    Vadziuk OB; Borysova LA; Titus OV; Kosterin SO
    Ukr Biokhim Zh (1999); 2003; 75(4):64-74. PubMed ID: 14681977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of microsomal and mitochondrial Ca2+-sequestration in rat cerebellum by polychlorinated biphenyl mixtures and congeners. Structure-activity relationships.
    Kodavanti PR; Ward TR; McKinney JD; Tilson HA
    Arch Toxicol; 1996; 70(3-4):150-7. PubMed ID: 8825671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis.
    Budd SL; Nicholls DG
    J Neurochem; 1996 Jan; 66(1):403-11. PubMed ID: 8522981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons.
    Wang GJ; Thayer SA
    J Neurophysiol; 1996 Sep; 76(3):1611-21. PubMed ID: 8890280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sphingosine derivatives on calcium fluxes in thyroid FRTL-5 cells.
    Törnquist K; Ekokoski E
    Biochem J; 1994 Apr; 299 ( Pt 1)(Pt 1):213-8. PubMed ID: 8166643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons.
    Peng TI; Jou MJ; Sheu SS; Greenamyre JT
    Exp Neurol; 1998 Jan; 149(1):1-12. PubMed ID: 9454610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.