BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 8774725)

  • 1. Probing the active site of Tritrichomonas foetus hypoxanthine-guanine-xanthine phosphoribosyltransferase using covalent modification of cysteine residues.
    Kanaani J; Somoza JR; Maltby D; Wang CC
    Eur J Biochem; 1996 Aug; 239(3):764-72. PubMed ID: 8774725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the flexible loop of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus in enzyme catalysis.
    Munagala N; Basus VJ; Wang CC
    Biochemistry; 2001 Apr; 40(14):4303-11. PubMed ID: 11284686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of Tritrichomonas foetus and Schistosoma mansoni purine phosphoribosyltransferases by arginine-specific reagents.
    Kanaani J; Maltby D; Somoza JR; Wang CC
    Eur J Biochem; 1997 Mar; 244(3):810-7. PubMed ID: 9108251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the hypoxanthine-guanine-xanthine phosphoribosyltransferase from the protozoan parasite Tritrichomonas foetus.
    Somoza JR; Chin MS; Focia PJ; Wang CC; Fletterick RJ
    Biochemistry; 1996 Jun; 35(22):7032-40. PubMed ID: 8679528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altering the purine specificity of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus by structure-based point mutations in the enzyme protein.
    Munagala NR; Wang CC
    Biochemistry; 1998 Nov; 37(47):16612-9. PubMed ID: 9843428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus has unique properties.
    Beck JT; Wang CC
    Mol Biochem Parasitol; 1993 Aug; 60(2):187-94. PubMed ID: 8232411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation, sequencing and expression of the gene encoding hypoxanthine-guanine-xanthine phosphoribosyltransferase of Tritrichomonas foetus.
    Chin MS; Wang CC
    Mol Biochem Parasitol; 1994 Feb; 63(2):221-9. PubMed ID: 8008020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state kinetics of the hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus: the role of threonine-47.
    Munagala NR; Chin MS; Wang CC
    Biochemistry; 1998 Mar; 37(12):4045-51. PubMed ID: 9521725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic studies on CDP-6-deoxy-delta 3,4-glucoseen reductase: the role of cysteine residues in catalysis as probed by chemical modification and site-directed mutagenesis.
    Ploux O; Lei Y; Vatanen K; Liu HW
    Biochemistry; 1995 Apr; 34(13):4159-68. PubMed ID: 7703227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of the 5-phospho-alpha-D-ribosyl-1-pyrophosphate binding site of human hypoxanthine-guanine phosphoribosyltransferase.
    Keough DT; Emmerson BT; de Jersey J
    Biochim Biophys Acta; 1991 Feb; 1096(2):95-100. PubMed ID: 1705826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function and reactivity of sulfhydryl groups of rat liver glycine methyltransferase.
    Fujioka M; Takata Y; Konishi K; Ogawa H
    Biochemistry; 1987 Sep; 26(18):5696-702. PubMed ID: 3676278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the active sites of human and schistosomal hypoxanthine-guanine phosphoribosyltransferases by GMP-2',3'-dialdehyde affinity labeling.
    Kanaani J; Maltby D; Focia P; Wang CC
    Biochemistry; 1995 Nov; 34(46):14987-96. PubMed ID: 7578112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of an essential cysteine residue in pyridoxal phosphatase from human erythrocytes.
    Gao G; Fonda ML
    J Biol Chem; 1994 Mar; 269(11):8234-9. PubMed ID: 8132548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the reactive cysteine residue in restriction endonuclease Cfr9I.
    Siksnys V; Pleckaityte M
    Biochim Biophys Acta; 1992 Nov; 1160(2):199-205. PubMed ID: 1332782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding substrate specificity in human and parasite phosphoribosyltransferases through calculation and experiment.
    Pitera JW; Munagala NR; Wang CC; Kollman PA
    Biochemistry; 1999 Aug; 38(32):10298-306. PubMed ID: 10441123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of selective submicromolar inhibitors of Tritrichomonas foetus hypoxanthine-guanine-xanthine phosphoribosyltransferase.
    Aronov AM; Munagala NR; Ortiz De Montellano PR; Kuntz ID; Wang CC
    Biochemistry; 2000 Apr; 39(16):4684-91. PubMed ID: 10769124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis.
    Salleh HM; Patel MA; Woodard RW
    Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of a cytosolic phospholipase A2 by thiol-modifying reagents: cysteine residues as potential targets of phospholipase A2.
    Li B; Copp L; Castelhano AL; Feng R; Stahl M; Yuan Z; Krantz A
    Biochemistry; 1994 Jul; 33(28):8594-603. PubMed ID: 8031794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant rat liver guanidinoacetate methyltransferase: reactivity and function of sulfhydryl groups.
    Fujioka M; Konishi K; Takata Y
    Biochemistry; 1988 Oct; 27(20):7658-64. PubMed ID: 3207695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sulfhydryl content of L-threonine dehydrogenase from Escherichia coli K-12: relation to catalytic activity and Mn2+ activation.
    Craig PA; Dekker EE
    Biochim Biophys Acta; 1990 Jan; 1037(1):30-8. PubMed ID: 2104757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.