These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8774902)

  • 1. The DNA supercoiling architecture induced by the transcription factor xUBF requires three of its five HMG-boxes.
    Stefanovsky VY; Bazett-Jones DP; Pelletier G; Moss T
    Nucleic Acids Res; 1996 Aug; 24(16):3208-15. PubMed ID: 8774902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF.
    Bazett-Jones DP; Leblanc B; Herfort M; Moss T
    Science; 1994 May; 264(5162):1134-7. PubMed ID: 8178172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction.
    Leblanc B; Read C; Moss T
    EMBO J; 1993 Feb; 12(2):513-25. PubMed ID: 8440241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The RNA polymerase I transcription factor xUBF contains 5 tandemly repeated HMG homology boxes.
    Bachvarov D; Moss T
    Nucleic Acids Res; 1991 May; 19(9):2331-5. PubMed ID: 2041774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity in the Xenopus ribosomal transcription factor xUBF has a molecular basis distinct from that in mammals.
    Bachvarov D; Normandeau M; Moss T
    FEBS Lett; 1991 Aug; 288(1-2):55-9. PubMed ID: 1879565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules.
    Stefanovsky VY; Pelletier G; Bazett-Jones DP; Crane-Robinson C; Moss T
    Nucleic Acids Res; 2001 Aug; 29(15):3241-7. PubMed ID: 11470882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. xUBF, an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity.
    Hu CH; McStay B; Jeong SW; Reeder RH
    Mol Cell Biol; 1994 May; 14(5):2871-82. PubMed ID: 8164649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role of basic residues and the putative intercalating phenylalanine of the HMG-1 box B in DNA supercoiling and binding to four-way DNA junctions.
    Stros M; Muselíková E
    J Biol Chem; 2000 Nov; 275(46):35699-707. PubMed ID: 10962007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HMG box 4 is the principal determinant of species specificity in the RNA polymerase I transcription factor UBF.
    Cairns C; McStay B
    Nucleic Acids Res; 1995 Nov; 23(22):4583-90. PubMed ID: 8524646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility-group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA.
    Putnam CD; Copenhaver GP; Denton ML; Pikaard CS
    Mol Cell Biol; 1994 Oct; 14(10):6476-88. PubMed ID: 7935371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the acidic tail on the DNA-binding properties of the HMG1,2 class of proteins: insights from tail switching and tail removal.
    Lee KB; Thomas JO
    J Mol Biol; 2000 Nov; 304(2):135-49. PubMed ID: 11080451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variants of the Xenopus laevis ribosomal transcription factor xUBF are developmentally regulated by differential splicing.
    Guimond A; Moss T
    Nucleic Acids Res; 1992 Jul; 20(13):3361-6. PubMed ID: 1630907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The specific interactions of HMG 1 and 2 with negatively supercoiled DNA are modulated by their acidic C-terminal domains and involve cysteine residues in their HMG 1/2 boxes.
    Sheflin LG; Fucile NW; Spaulding SW
    Biochemistry; 1993 Apr; 32(13):3238-48. PubMed ID: 8461290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-binding properties of the tandem HMG boxes of high-mobility-group protein 1 (HMG1).
    Grasser KD; Teo SH; Lee KB; Broadhurst RW; Rees C; Hardman CH; Thomas JO
    Eur J Biochem; 1998 May; 253(3):787-95. PubMed ID: 9654080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The recognition of distorted DNA structures by HMG-D: a footprinting and molecular modelling study.
    Payet D; Hillisch A; Lowe N; Diekmann S; Travers A
    J Mol Biol; 1999 Nov; 294(1):79-91. PubMed ID: 10556030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of a sequence essential for the nuclear transport of the Xenopus ribosomal transcription factor xUBF using a simple coupled translation-transport and acid extraction approach.
    Dimitrov SI; Bachvarov D; Moss T
    DNA Cell Biol; 1993 Apr; 12(3):275-81. PubMed ID: 8466650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. xUBF contains a novel dimerization domain essential for RNA polymerase I transcription.
    McStay B; Frazier MW; Reeder RH
    Genes Dev; 1991 Nov; 5(11):1957-68. PubMed ID: 1936987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure and DNA binding property of the fifth HMG box domain in comparison with the first HMG box domain in human upstream binding factor.
    Yang W; Xu Y; Wu J; Zeng W; Shi Y
    Biochemistry; 2003 Feb; 42(7):1930-8. PubMed ID: 12590579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HMG I/Y regulates long-range enhancer-dependent transcription on DNA and chromatin by changes in DNA topology.
    Bagga R; Michalowski S; Sabnis R; Griffith JD; Emerson BM
    Nucleic Acids Res; 2000 Jul; 28(13):2541-50. PubMed ID: 10871404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids.
    Copenhaver GP; Putnam CD; Denton ML; Pikaard CS
    Nucleic Acids Res; 1994 Jul; 22(13):2651-7. PubMed ID: 8041627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.