These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8775371)

  • 1. Comparison of heating of nonliving soft tissue produced by 45 kHz and 1 MHz frequency ultrasound machines.
    Ward AR; Robertson VJ
    J Orthop Sports Phys Ther; 1996 Apr; 23(4):258-66. PubMed ID: 8775371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subaqueous ultrasound: 45kHz and 1MHz machines compared.
    Robertson VJ; Ward AR
    Arch Phys Med Rehabil; 1995 Jun; 76(6):569-75. PubMed ID: 7763158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound.
    Draper DO; Castel JC; Castel D
    J Orthop Sports Phys Ther; 1995 Oct; 22(4):142-50. PubMed ID: 8535471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic ultrasound for osteoradionecrosis: an in vitro comparison between 1 MHz and 45 kHz machines.
    Reher P; Doan N; Bradnock B; Meghji S; Harris M
    Eur J Cancer; 1998 Nov; 34(12):1962-8. PubMed ID: 10023323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature change in lumbar periarticular tissue with continuous ultrasound.
    Morrisette DC; Brown D; Saladin ME
    J Orthop Sports Phys Ther; 2004 Dec; 34(12):754-60. PubMed ID: 15643730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of two ultrasound devices and angles of application on the temperature of tissue phantom.
    Kimura IF; Gulick DT; Shelly J; Ziskin MC
    J Orthop Sports Phys Ther; 1998 Jan; 27(1):27-31. PubMed ID: 9440038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identical 3-MHz ultrasound treatments with different devices produce different intramuscular temperatures.
    Merrick MA; Bernard KD; Devor ST; Williams MJ
    J Orthop Sports Phys Ther; 2003 Jul; 33(7):379-85. PubMed ID: 12918863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of quantitative Schlieren assessment of physiotherapy ultrasound fields in describing variations between tissue heating rates of different transducers.
    Johns LD; Demchak TJ; Straub SJ; Howard SM
    Ultrasound Med Biol; 2007 Dec; 33(12):1911-7. PubMed ID: 17698281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The variation of heating depth with therapeutic ultrasound frequency in physiotherapy.
    Demmink JH; Helders PJ; Hobaek H; Enwemeka C
    Ultrasound Med Biol; 2003 Jan; 29(1):113-8. PubMed ID: 12604122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field.
    Morris H; Rivens I; Shaw A; Haar GT
    Phys Med Biol; 2008 Sep; 53(17):4759-76. PubMed ID: 18701773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues.
    Maleke C; Konofagou EE
    Phys Med Biol; 2008 Mar; 53(6):1773-93. PubMed ID: 18367802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Ultrasonic hyperthermia of the animal brain].
    Gavrilov LR; Vykhodtseva NI; Konopatskaia II; Dmitriev VN; Elagin VA
    Med Radiol (Mosk); 1987 Jun; 32(6):49-54. PubMed ID: 3600225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations and measurements of transcranial low-frequency ultrasound therapy: skull-base heating and effective area of treatment.
    Pulkkinen A; Huang Y; Song J; Hynynen K
    Phys Med Biol; 2011 Aug; 56(15):4661-83. PubMed ID: 21734333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Basic investigation on hyperthermia by low-frequency ultrasonic].
    Shiina T; Saito M
    Iyodenshi To Seitai Kogaku; 1989 Jun; 27(2):107-11. PubMed ID: 2810880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive vasectomy using a focused ultrasound clip: thermal measurements and simulations.
    Fried NM; Sinelnikov YD; Pant BB; Roberts WW; Solomon SB
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1453-9. PubMed ID: 11759926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].
    Abramowicz JS; Kremkau FW; Merz E
    Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavitation-enhanced ultrasound thermal therapy by combined low- and high-frequency ultrasound exposure.
    Liu HL; Chen WS; Chen JS; Shih TC; Chen YY; Lin WL
    Ultrasound Med Biol; 2006 May; 32(5):759-67. PubMed ID: 16677935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring radio-frequency thermal ablation with ultrasound by low frequency acoustic emissions--in vitro and in vivo study.
    Winkler I; Adam D
    Ultrasound Med Biol; 2011 May; 37(5):755-67. PubMed ID: 21497718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.
    Chopra R; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2005 Nov; 50(21):4957-75. PubMed ID: 16237234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Dynatron Solaris® Ultrasound Machine: Slower Heating Than Textbook Recommendations at 3 MHz, 1.0 W/cm
    Gange KN; Kjellerson MC; Berdan CJ
    J Sport Rehabil; 2018 Jan; 27(1):22-29. PubMed ID: 27992304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.