These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 877572)

  • 1. Bioactivation as a model for drug design bioreductive alkylation.
    Moore HW
    Science; 1977 Aug; 197(4303):527-32. PubMed ID: 877572
    [No Abstract]   [Full Text] [Related]  

  • 2. Natural quinones as quinonemethide precursors--ideas in rational drug design.
    Moore HW; Czerniak R; Hamdan A
    Drugs Exp Clin Res; 1986; 12(6-7):475-94. PubMed ID: 3461932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free radical formation by antitumor quinones.
    Powis G
    Free Radic Biol Med; 1989; 6(1):63-101. PubMed ID: 2492250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naturally occurring quinones as potential bioreductive alkylating agents.
    Moore HW; Czerniak R
    Med Res Rev; 1981; 1(3):249-80. PubMed ID: 6810039
    [No Abstract]   [Full Text] [Related]  

  • 5. Adriamycin and related anthracycline antibiotics.
    Brown JR
    Prog Med Chem; 1978; 15():125-64. PubMed ID: 400611
    [No Abstract]   [Full Text] [Related]  

  • 6. Twenty-first Paterson symposium: bioactivation of quinone anti-tumor agents.
    Br J Cancer; 1987 Mar; 55(3):327-30. PubMed ID: 3105571
    [No Abstract]   [Full Text] [Related]  

  • 7. Genetic toxicology of mitomycin C, actinomycins, daunomycin and adriamycin.
    Vig BK
    Mutat Res; 1977; 39(2):189-238. PubMed ID: 68434
    [No Abstract]   [Full Text] [Related]  

  • 8. Electrochemistry of potential bioreductive alkylating quinones: its use in the development of new aziridinylquinones.
    Driebergen RJ; Holthuis JJ; Hulshoff A; Postma-Kelder SJ; Verboom W; Reinhoudt DN; Lelieveld P
    Anticancer Res; 1986; 6(4):605-19. PubMed ID: 3752941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox pathway leading to the alkylation of DNA by the anthracycline, antitumor drugs adriamycin and daunomycin.
    Taatjes DJ; Gaudiano G; Resing K; Koch TH
    J Med Chem; 1997 Apr; 40(8):1276-86. PubMed ID: 9111302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decomposition of mitomycin and anthracycline cytostatics in cell culture media.
    Beijnen JH; Van der Nat JM; Labadie RP; Underberg WJ
    Anticancer Res; 1986; 6(1):39-43. PubMed ID: 3082277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of aclarubicin with DNA as compared with daunorubicin and doxorubicin.
    Ando S; Sasada M; Uchino H; Kagawa D; Ueda T; Nakamura T
    Nihon Gan Chiryo Gakkai Shi; 1986 Dec; 21(10):2343-55. PubMed ID: 3471823
    [No Abstract]   [Full Text] [Related]  

  • 12. Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs.
    Kalyanaraman B; Perez-Reyes E; Mason RP
    Biochim Biophys Acta; 1980 Jun; 630(1):119-30. PubMed ID: 6248123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytofluorescence localization of anthracycline antibiotics.
    Egorin MJ; Clawson RE; Cohen JL; Ross LA; Bachur NR
    Cancer Res; 1980 Dec; 40(12):4669-76. PubMed ID: 6934029
    [No Abstract]   [Full Text] [Related]  

  • 14. Cyclopropamitosenes: novel bioreductive anticancer agents--mechanism of action and enzymic reduction.
    Moody CJ; O'Sullivan N; Stratford IJ; Stephens MA; Workman P; Bailey SM; Lewis A
    Anticancer Drugs; 1994 Jun; 5(3):367-72. PubMed ID: 7919462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-cancer activity of anthracycline antibiotics and DNA condensation.
    Cera C; Palumbo M
    Anticancer Drug Des; 1990 Aug; 5(3):265-71. PubMed ID: 2400539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of a netropsin conjugate of a water-soluble epi-quinocarcin analogue: the importance of stereochemistry at nitrogen.
    Herberich B; Scott JD; Williams RM
    Bioorg Med Chem; 2000 Mar; 8(3):523-32. PubMed ID: 10732968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two nonsynonymous single nucleotide polymorphisms of human carbonyl reductase 1 demonstrate reduced in vitro metabolism of daunorubicin and doxorubicin.
    Bains OS; Karkling MJ; Grigliatti TA; Reid RE; Riggs KW
    Drug Metab Dispos; 2009 May; 37(5):1107-14. PubMed ID: 19204081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular pharmacology of amino acid derivatives of daunorubicin and doxorubicin in suspension of renal proximal tubules.
    Hjelle JT; Baurain R; Masquelier M; Trouet A
    J Pharmacol Exp Ther; 1984 May; 229(2):372-80. PubMed ID: 6585548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells.
    Kennedy KA; Rockwell S; Sartorelli AC
    Cancer Res; 1980 Jul; 40(7):2356-60. PubMed ID: 7388797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics.
    Pritsos CA; Sartorelli AC
    Cancer Res; 1986 Jul; 46(7):3528-32. PubMed ID: 3011250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.