These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8776229)

  • 1. Methodological effects on the VO2-power regression and the accumulated O2 deficit.
    Green S; Dawson BT
    Med Sci Sports Exerc; 1996 Mar; 28(3):392-7. PubMed ID: 8776229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The oxygen uptake-power regression in cyclists and untrained men: implications for the accumulated oxygen deficit.
    Green S; Dawson BT
    Eur J Appl Physiol Occup Physiol; 1995; 70(4):351-9. PubMed ID: 7649147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal aspects of the VO2 response at the power output associated with VO2peak in well trained cyclists--implications for interval training prescription.
    Laursen PB; Shing CM; Jenkins DG
    Res Q Exerc Sport; 2004 Dec; 75(4):423-8. PubMed ID: 15673041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of endurance training on the ventilatory response to exercise in elite cyclists.
    Hoogeveen AR
    Eur J Appl Physiol; 2000 May; 82(1-2):45-51. PubMed ID: 10879442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of training status and exercise intensity on phase II VO2 kinetics.
    Koppo K; Bouckaert J; Jones AM
    Med Sci Sports Exerc; 2004 Feb; 36(2):225-32. PubMed ID: 14767244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans.
    Gerbino A; Ward SA; Whipp BJ
    J Appl Physiol (1985); 1996 Jan; 80(1):99-107. PubMed ID: 8847338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen cost of internal work during cycling.
    Francescato MP; Girardis M; di Prampero PE
    Eur J Appl Physiol Occup Physiol; 1995; 72(1-2):51-7. PubMed ID: 8789570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximal accumulated oxygen deficit must be calculated using 10-min time periods.
    Buck D; McNaughton L
    Med Sci Sports Exerc; 1999 Sep; 31(9):1346-9. PubMed ID: 10487379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans.
    Zoladz JA; Duda K; Majerczak J
    Eur J Appl Physiol Occup Physiol; 1998 Apr; 77(5):445-51. PubMed ID: 9562296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise.
    Rossiter HB; Kowalchuk JM; Whipp BJ
    J Appl Physiol (1985); 2006 Mar; 100(3):764-70. PubMed ID: 16282428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the total energy demand for supra-maximal exercise using the VO2-power regression from an incremental exercise test.
    Aisbett B; Le Rossignol P
    J Sci Med Sport; 2003 Sep; 6(3):343-7. PubMed ID: 14609151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ramp slope on ventilation thresholds and VO2peak in male cyclists.
    Weston SB; Gray AB; Schneider DA; Gass GC
    Int J Sports Med; 2002 Jan; 23(1):22-7. PubMed ID: 11774062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic ATP production and accumulated O2 deficit in cyclists.
    Green S; Dawson BT; Goodman C; Carey MF
    Med Sci Sports Exerc; 1996 Mar; 28(3):315-21. PubMed ID: 8776220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps.
    Richardson RS; Grassi B; Gavin TP; Haseler LJ; Tagore K; Roca J; Wagner PD
    J Appl Physiol (1985); 1999 Mar; 86(3):1048-53. PubMed ID: 10066722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Warm-up strategy and high-intensity endurance performance in trained cyclists.
    Christensen PM; Bangsbo J
    Int J Sports Physiol Perform; 2015 Apr; 10(3):353-60. PubMed ID: 25229657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing two methods to assess power output associated with peak oxygen uptake in cyclists.
    Rønnestad BR
    J Strength Cond Res; 2014 Jan; 28(1):134-9. PubMed ID: 23669813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of erythropoietin on cycling performance of well trained cyclists: a double-blind, randomised, placebo-controlled trial.
    Heuberger JAAC; Rotmans JI; Gal P; Stuurman FE; van 't Westende J; Post TE; Daniels JMA; Moerland M; van Veldhoven PLJ; de Kam ML; Ram H; de Hon O; Posthuma JJ; Burggraaf J; Cohen AF
    Lancet Haematol; 2017 Aug; 4(8):e374-e386. PubMed ID: 28669689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pacing strategy on work done above critical power during high-intensity exercise.
    Chidnok W; Dimenna FJ; Bailey SJ; Wilkerson DP; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2013 Jul; 45(7):1377-85. PubMed ID: 23377832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Oxygen Uptake Kinetics During Severe-intensity Laboratory and Field Cycling.
    Prinz B; Haselsberger K; Tschan H; Nimmerichter A
    Int J Sports Med; 2019 Sep; 40(10):625-630. PubMed ID: 31307098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.