These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 8776708)

  • 1. EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components.
    Pfurtscheller G; Flotzinger D; Pregenzer M; Wolpaw JR; McFarland D
    Med Prog Technol; 1995-1996; 21(3):111-21. PubMed ID: 8776708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of electrode positions for an EEG-based brain computer interface (BCI).
    Pregenzer M; Pfurtscheller G; Flotzinger D
    Biomed Tech (Berl); 1994 Oct; 39(10):264-9. PubMed ID: 7811910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
    McFarland DJ; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):372-9. PubMed ID: 16200760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Discrimination between left and right hand movement imagery event-releated EEG pattern].
    Zhu Q; Wang M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):1031-4. PubMed ID: 15646359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid prototyping of an EEG-based brain-computer interface (BCI).
    Guger C; Schlögl A; Neuper C; Walterspacher D; Strein T; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):49-58. PubMed ID: 11482363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness.
    Pichiorri F; De Vico Fallani F; Cincotti F; Babiloni F; Molinari M; Kleih SC; Neuper C; Kübler A; Mattia D
    J Neural Eng; 2011 Apr; 8(2):025020. PubMed ID: 21436514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):258-65. PubMed ID: 15218939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A brain-controlled switch for asynchronous control applications.
    Mason SG; Birch GE
    IEEE Trans Biomed Eng; 2000 Oct; 47(10):1297-307. PubMed ID: 11059164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor imagery and EEG-based control of spelling devices and neuroprostheses.
    Neuper C; Müller-Putz GR; Scherer R; Pfurtscheller G
    Prog Brain Res; 2006; 159():393-409. PubMed ID: 17071244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bipolar electrode selection for a motor imagery based brain-computer interface.
    Lou B; Hong B; Gao X; Gao S
    J Neural Eng; 2008 Sep; 5(3):342-9. PubMed ID: 18756030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing of EEG-based cursor control.
    Wolpaw JR; Flotzinger D; Pfurtscheller G; McFarland DJ
    J Clin Neurophysiol; 1997 Nov; 14(6):529-38. PubMed ID: 9458060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of DFT and lock-in amplifier features and search for optimal electrode positions in SSVEP-based BCI.
    Müller-Putz GR; Eder E; Wriessnegger SC; Pfurtscheller G
    J Neurosci Methods; 2008 Feb; 168(1):174-81. PubMed ID: 17980917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroimage of voluntary movement: topography of the Bereitschaftspotential, a 64-channel DC current source density study.
    Cui RQ; Huter D; Lang W; Deecke L
    Neuroimage; 1999 Jan; 9(1):124-34. PubMed ID: 9918734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface.
    Kübler A; Nijboer F; Mellinger J; Vaughan TM; Pawelzik H; Schalk G; McFarland DJ; Birbaumer N; Wolpaw JR
    Neurology; 2005 May; 64(10):1775-7. PubMed ID: 15911809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.