These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8776710)

  • 41. Estimating the measuring sensitivity of unipolar and bipolar ECG with lead field method and FDM models.
    Puurtinen M; Viik J; Takano N; Malmivuo J; Hyttinen J
    Comput Methods Programs Biomed; 2009 May; 94(2):161-7. PubMed ID: 19185947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A simulation study on the effect of thoracic conductivity inhomogeneities on sensitivity distributions.
    Yang F; Patterson RP
    Ann Biomed Eng; 2008 May; 36(5):762-8. PubMed ID: 18299989
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell for measurements of biological tissue complex conductivity.
    Wtorek J; Poliñski A; Stelter J; Nowakowski A
    Technol Health Care; 1998 Sep; 6(2-3):177-93. PubMed ID: 9839863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Monitoring of lung edema using focused impedance spectroscopy: a feasibility study.
    Mayer M; Brunner P; Merwa R; Scharfetter H
    Physiol Meas; 2005 Jun; 26(3):185-92. PubMed ID: 15798294
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Effect of tissue impedance on the ECG and MCG signal: a phantom study].
    Winklmaier M; Achenbach S; Kaltenhäuser M; Moshage W; Daniel WG
    Biomed Tech (Berl); 1998; 43 Suppl():354-5. PubMed ID: 9859395
    [No Abstract]   [Full Text] [Related]  

  • 46. Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model.
    Kauppinen PK; Hyttinen JA; Malmivuo JA
    Ann Biomed Eng; 1998; 26(4):694-702. PubMed ID: 9662161
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Imaging cardiac impedance changes in the human thorax using impedance tomography].
    Li JH; Joppek C; Faust U; Nagel J
    Biomed Tech (Berl); 1998; 43 Suppl():52-3. PubMed ID: 9859253
    [No Abstract]   [Full Text] [Related]  

  • 48. A portable bio-impedance system for monitoring lung resistivity.
    Zlochiver S; Arad M; Radai MM; Barak-Shinar D; Krief H; Engelman T; Ben-Yehuda R; Adunsky A; Abboud S
    Med Eng Phys; 2007 Jan; 29(1):93-100. PubMed ID: 16546432
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Rheographic monitoring of lung ventilation (author's transl)].
    Benzer H; Fitzal S; Geyer A; Goldschmied W; Haider W; Pauser G; Polzer K; Schuhfried F
    Anaesthesist; 1977 Sep; 26(9):534-42. PubMed ID: 907089
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Origins of the impedance change in impedance cardiography by a three-dimensional finite element model.
    Kim DW; Baker LE; Pearce JA; Kim WK
    IEEE Trans Biomed Eng; 1988 Dec; 35(12):993-1000. PubMed ID: 3220505
    [No Abstract]   [Full Text] [Related]  

  • 51. Development of methods for monitoring of electrocardiograms, impedance cardiograms and seismocardiograms.
    Gargasas L; Janusauskas A; Lukosevicius A; Vainoras A; Ruseckas R; Korsakas S; Miskinis V
    Stud Health Technol Inform; 2004; 105():131-41. PubMed ID: 15718602
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental and numerical study on optimal spot-electrodes arrays in transthoracic electrical impedance cardiography.
    Ikarashi A; Nogawa M; Tanaka S; Yamakoshi K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4580-3. PubMed ID: 18003025
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chest conduction properties and ECG equalization.
    Delle Cave G; Fabricatore G; Nolfe G; Petrosino M; Pizzuti GP
    Boll Soc Ital Biol Sper; 2000; 76(9-10):59-66. PubMed ID: 11503354
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Applicability of the single equivalent moving dipole model in an infinite homogeneous medium to identify cardiac electrical sources: a computer simulation study in a realistic anatomic geometry torso model.
    Fukuoka Y; Oostendorp TF; Sherman DA; Armoundas AA
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2436-44. PubMed ID: 17153200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel electrode configuration for highly linear impedance pneumography.
    Seppä VP; Hyttinen J; Uitto M; Chrapek W; Viik J
    Biomed Tech (Berl); 2013 Feb; 58(1):35-8. PubMed ID: 23348215
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional electrical impedance tomography: a topology optimization approach.
    Mello LA; de Lima CR; Amato MB; Lima RG; Silva EC
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):531-40. PubMed ID: 18269988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of cardiac monitoring using fiber optic plethysmography.
    Augousti AT; Maletras FX; Mason J
    Ann Biomed Eng; 2006 Mar; 34(3):416-25. PubMed ID: 16482413
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automatic detection of detached and erroneous electrodes in electrical impedance tomography.
    Asfaw Y; Adler A
    Physiol Meas; 2005 Apr; 26(2):S175-83. PubMed ID: 15798230
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anatomically constrained electrical impedance tomography for three-dimensional anisotropic bodies.
    Glidewell ME; Ng KT
    IEEE Trans Med Imaging; 1997 Oct; 16(5):572-80. PubMed ID: 9368112
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimum design of electrode structure and parameters in electrical impedance tomography.
    Yan W; Hong S; Chaoshi R
    Physiol Meas; 2006 Mar; 27(3):291-306. PubMed ID: 16462015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.