These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8776710)

  • 61. Detection of pulse and respiratory signals from the wrist using dry electrodes.
    Farag AA; Tacker WA; Foster KS; Bourland JD; Geddes LA
    Biomed Instrum Technol; 1994; 28(4):311-4. PubMed ID: 7920847
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mapping the cardiogenic impedance signal on the thoracic surface.
    Patterson RP; Wang L; Raza B; Wood K
    Med Biol Eng Comput; 1990 May; 28(3):212-6. PubMed ID: 2377002
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization.
    Sel D; Lebar AM; Miklavcic D
    IEEE Trans Biomed Eng; 2007 May; 54(5):773-81. PubMed ID: 17518273
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electrode placement configurations for 3D EIT.
    Graham BM; Adler A
    Physiol Meas; 2007 Jul; 28(7):S29-44. PubMed ID: 17664643
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Detecting variations of blood volume shift due to heart beat from respiratory inductive plethysmography measurements in man.
    Fontecave-Jallon J; Videlier B; Baconnier P; Tanguy S; Calabrese P; Guméry PY
    Physiol Meas; 2013 Sep; 34(9):1085-101. PubMed ID: 23954865
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Thoracic geometry and its relation to electrical current distribution: consequences for electrode placement in electrical impedance cardiography.
    Raaijmakers E; Faes TJ; Goovaerts HG; Meijer JH; de Vries PM; Heethaar RM
    Med Biol Eng Comput; 1998 Sep; 36(5):592-7. PubMed ID: 10367443
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Multi-frequency imaging and modelling of respiratory related electrical impedance changes.
    Brown BH; Barber DC; Wang W; Lu L; Leathard AD; Smallwood RH; Hampshire AR; Mackay R; Hatzigalanis K
    Physiol Meas; 1994 May; 15 Suppl 2a():A1-12. PubMed ID: 8087030
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Changes in chest electrode impedance.
    Lateef F; Lim SH; Anantharaman V; Lim CS
    Am J Emerg Med; 2000 Jul; 18(4):381-4. PubMed ID: 10919523
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The feasibility of transoesophageal bioimpedance measurements for the detection of heart graft rejection.
    Giovinazzo G; Ribas N; Cinca J; Rosell-Ferrer J
    Physiol Meas; 2011 Jul; 32(7):867-76. PubMed ID: 21646700
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Simulation analysis and experimental study of positioning signals in thorax electric field catheter].
    Chen Z; Wang P; Su Z; Xia Z; Gao J; Liu N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):234-8. PubMed ID: 23858739
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Changes in the heart volume measured rheocardiographically in connection with changes in body position and air filling of the thorax].
    Mayer P
    Cas Lek Cesk; 1982 Dec; 121(50):1553-5. PubMed ID: 7159909
    [No Abstract]   [Full Text] [Related]  

  • 72. Five-electrode field plethysmography technique for separation of respiration and cardiac signals.
    Nakesch H; Pfützner H; Ruhsam C; Nopp P; Futschik K
    Med Biol Eng Comput; 1994 Jul; 32(4 Suppl):S65-70. PubMed ID: 7967842
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Investigation of catheter curvature and genetic algorithms in conductance catheter optimization.
    Thaijiam C; Gale TJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2195-8. PubMed ID: 18002425
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Adaptive filtering for suppression of respiratory artifact in impedance cardiography.
    Pandey VK; Pandey PC; Burkule NJ; Subramanyan LR
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7932-6. PubMed ID: 22256180
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable plethysmography applications.
    Ferreira J; Seoane F; Lindecrantz K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():559-62. PubMed ID: 24109748
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optimisation of transcutaneous cardiac pacing by three-dimensional finite element modelling of the human thorax.
    Panescu D; Webster JG; Tompkins WJ; Stratbucker RA
    Med Biol Eng Comput; 1995 Nov; 33(6):769-75. PubMed ID: 8558949
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Relations between components of impedance cardiogram analyzed by means of finite element model and sensitivity theorem.
    Wtorek J
    Ann Biomed Eng; 2000; 28(11):1352-61. PubMed ID: 11212953
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electric current distribution in tissues upon electrotherapy.
    Lambert H; De Bisschop F; De Mey G; De Cuyper H; Demurie S; Vanderstraeten G; Blondé W
    Acta Belg Med Phys; 1989; 12(2):31-40. PubMed ID: 2603590
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [A measuring device for calculating electrical impedance of the heart in clinical conditions].
    Schmidt C; Schima H; Raderer F; Wieselthaler G
    Biomed Tech (Berl); 1992 May; 37(5):109-14. PubMed ID: 1633254
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Studies on separating the impedance change components of blood vessels and ventricles in thorax from mixed impedance signals on chest surface.
    Kuang MX; Xiao QJ; Kuang NZ; Cui CY; Hu AR
    Med Phys; 2011 Jun; 38(6):3270-8. PubMed ID: 21815401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.