These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8778255)

  • 1. Adaptation motor learning of arm movements in patients with cerebellar disease.
    Deuschl G; Toro C; Zeffiro T; Massaquoi S; Hallett M
    J Neurol Neurosurg Psychiatry; 1996 May; 60(5):515-9. PubMed ID: 8778255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor skill learning in patients with cerebellar degeneration.
    Topka H; Massaquoi SG; Benda N; Hallett M
    J Neurol Sci; 1998 Jun; 158(2):164-72. PubMed ID: 9702687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement-related cortical potentials preceding sequential and goal-directed finger and arm movements in patients with cerebellar atrophy.
    Wessel K; Verleger R; Nazarenus D; Vieregge P; Kömpf D
    Electroencephalogr Clin Neurophysiol; 1994 Jul; 92(4):331-41. PubMed ID: 7517855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements.
    Maschke M; Gomez CM; Ebner TJ; Konczak J
    J Neurophysiol; 2004 Jan; 91(1):230-8. PubMed ID: 13679403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased dependence upon visual information of movement performance during visuo-motor tracking in cerebellar disorders.
    Cody FW; Lövgreen B; Schady W
    Electroencephalogr Clin Neurophysiol; 1993 Dec; 89(6):399-407. PubMed ID: 7507426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disturbances in human arm movement trajectory due to mild cerebellar dysfunction.
    Brown SH; Hefter H; Mertens M; Freund HJ
    J Neurol Neurosurg Psychiatry; 1990 Apr; 53(4):306-13. PubMed ID: 2341844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor learning in patients with cerebellar dysfunction.
    Sanes JN; Dimitrov B; Hallett M
    Brain; 1990 Feb; 113 ( Pt 1)():103-20. PubMed ID: 2302528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory prediction errors drive cerebellum-dependent adaptation of reaching.
    Tseng YW; Diedrichsen J; Krakauer JW; Shadmehr R; Bastian AJ
    J Neurophysiol; 2007 Jul; 98(1):54-62. PubMed ID: 17507504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Computerized method for arm movement assessment in Parkinson's disease and cerebellar syndrome patients].
    Dordević O; Popović MB; Kostić V
    Srp Arh Celok Lek; 2005; 133(1-2):14-20. PubMed ID: 16053170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of upper limb function after cerebellar stroke: lesion symptom mapping and arm kinematics.
    Konczak J; Pierscianek D; Hirsiger S; Bultmann U; Schoch B; Gizewski ER; Timmann D; Maschke M; Frings M
    Stroke; 2010 Oct; 41(10):2191-200. PubMed ID: 20814010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purkinje cell complex and simple spike changes during a voluntary arm movement learning task in the monkey.
    Ojakangas CL; Ebner TJ
    J Neurophysiol; 1992 Dec; 68(6):2222-36. PubMed ID: 1491268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor learning in children with spina bifida: intact learning and performance on a ballistic task.
    Dennis M; Jewell D; Edelstein K; Brandt ME; Hetherington R; Blaser SE; Fletcher JM
    J Int Neuropsychol Soc; 2006 Sep; 12(5):598-608. PubMed ID: 16961941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contralateral cerebellar damage impairs imperative planning but not updating of aimed arm movements in humans.
    Fisher BE; Boyd L; Winstein CJ
    Exp Brain Res; 2006 Oct; 174(3):453-66. PubMed ID: 16741716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Kinematic Redundancy and Motor Equivalence During Whole-Body Reaching in Individuals With Chronic Stroke.
    Tomita Y; Mullick AA; Levin MF
    Neurorehabil Neural Repair; 2018 Feb; 32(2):175-186. PubMed ID: 29554848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.
    Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C
    Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manual tracking performance in patients with cerebellar incoordination: effects of mechanical loading.
    Morrice BL; Becker WJ; Hoffer JA; Lee RG
    Can J Neurol Sci; 1990 Aug; 17(3):275-85. PubMed ID: 2207881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intact ability to learn internal models of arm dynamics in Huntington's disease but not cerebellar degeneration.
    Smith MA; Shadmehr R
    J Neurophysiol; 2005 May; 93(5):2809-21. PubMed ID: 15625094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebellar subjects show impaired coupling of reach and grasp movements.
    Zackowski KM; Thach WT; Bastian AJ
    Exp Brain Res; 2002 Oct; 146(4):511-22. PubMed ID: 12355280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor commands for fast point-to-point arm movements are customized for small changes in inertial load.
    Pinter IJ; Bobbert MF; van Soest AJ; Smeets JB
    J Electromyogr Kinesiol; 2011 Dec; 21(6):960-7. PubMed ID: 21890379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.