BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 8779601)

  • 1. Genetic manipulation of the pathway for diacetyl metabolism in Lactococcus lactis.
    Swindell SR; Benson KH; Griffin HG; Renault P; Ehrlich SD; Gasson MJ
    Appl Environ Microbiol; 1996 Jul; 62(7):2641-3. PubMed ID: 8779601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular description and industrial potential of Tn6098 conjugative transfer conferring alpha-galactoside metabolism in Lactococcus lactis.
    Machielsen R; Siezen RJ; van Hijum SA; van Hylckama Vlieg JE
    Appl Environ Microbiol; 2011 Jan; 77(2):555-63. PubMed ID: 21115709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of
    Hernandez-Valdes JA; Solopova A; Kuipers OP
    Front Microbiol; 2020; 11():1032. PubMed ID: 32523575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A thermodynamic atlas of carbon redox chemical space.
    Jinich A; Sanchez-Lengeling B; Ren H; Goldford JE; Noor E; Sanders JN; Segrè D; Aspuru-Guzik A
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):32910-32918. PubMed ID: 33376214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beverage and Food Fragrance Biotechnology, Novel Applications, Sensory and Sensor Techniques: An Overview.
    Vilela A; Bacelar E; Pinto T; Anjos R; Correia E; Gonçalves B; Cosme F
    Foods; 2019 Dec; 8(12):. PubMed ID: 31817355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhizobacterium-derived diacetyl modulates plant immunity in a phosphate-dependent manner.
    Morcillo RJ; Singh SK; He D; An G; Vílchez JI; Tang K; Yuan F; Sun Y; Shao C; Zhang S; Yang Y; Liu X; Dang Y; Wang W; Gao J; Huang W; Lei M; Song CP; Zhu JK; Macho AP; Paré PW; Zhang H
    EMBO J; 2020 Jan; 39(2):e102602. PubMed ID: 31802519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Respiratory Growth on the Metabolite Production and Stress Robustness of
    Ricciardi A; Zotta T; Ianniello RG; Boscaino F; Matera A; Parente E
    Front Microbiol; 2019; 10():851. PubMed ID: 31068919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical method validation and monitoring of diacetyl in liquors from Korean market.
    Lee HH; Lee KT; Shin JA
    Food Sci Biotechnol; 2017; 26(4):893-899. PubMed ID: 30263617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of microbial metabolic pathways inhibits the generation of the human body odor component diacetyl by Staphylococcus spp.
    Hara T; Matsui H; Shimizu H
    PLoS One; 2014; 9(11):e111833. PubMed ID: 25390046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds.
    Papagianni M
    Comput Struct Biotechnol J; 2012; 3():e201210003. PubMed ID: 24688663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl.
    Wang Y; Li L; Ma C; Gao C; Tao F; Xu P
    Sci Rep; 2013; 3():2643. PubMed ID: 24025762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diacetyl and acetoin production from whey permeate using engineered Lactobacillus casei.
    Nadal I; Rico J; Pérez-Martínez G; Yebra MJ; Monedero V
    J Ind Microbiol Biotechnol; 2009 Sep; 36(9):1233-7. PubMed ID: 19609583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Use of a Screening Procedure for Production of (alpha)-Acetolactate by Lactococcus lactis subsp. lactis biovar diacetylactis Strains.
    Monnet C; Schmitt P; Divies C
    Appl Environ Microbiol; 1997 Feb; 63(2):793-5. PubMed ID: 16535527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system.
    Vido K; Le Bars D; Mistou MY; Anglade P; Gruss A; Gaudu P
    J Bacteriol; 2004 Mar; 186(6):1648-57. PubMed ID: 14996795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IS981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis.
    Bongers RS; Hoefnagel MH; Starrenburg MJ; Siemerink MA; Arends JG; Hugenholtz J; Kleerebezem M
    J Bacteriol; 2003 Aug; 185(15):4499-507. PubMed ID: 12867459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased production of folate by metabolic engineering of Lactococcus lactis.
    Sybesma W; Starrenburg M; Kleerebezem M; Mierau I; de Vos WM; Hugenholtz J
    Appl Environ Microbiol; 2003 Jun; 69(6):3069-76. PubMed ID: 12788700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei.
    Gosalbes MJ; Esteban CD; Galán JL; Pérez-Martínez G
    Appl Environ Microbiol; 2000 Nov; 66(11):4822-8. PubMed ID: 11055930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactococcus lactis as a cell factory for high-level diacetyl production.
    Hugenholtz J; Kleerebezem M; Starrenburg M; Delcour J; de Vos W; Hols P
    Appl Environ Microbiol; 2000 Sep; 66(9):4112-4. PubMed ID: 10966436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general method for selection of alpha-acetolactate decarboxylase-deficient Lactococcus lactis mutants to improve diacetyl formation.
    Curic M; Stuer-Lauridsen B; Renault P; Nilsson D
    Appl Environ Microbiol; 1999 Mar; 65(3):1202-6. PubMed ID: 10049884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase.
    Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J
    J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.