These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67 related articles for article (PubMed ID: 8779843)
1. Decreases in steady-state muscle performance and vessel density in reduced renal mass hypertensive rats. O'Drobinak DM; Greene AS Am J Physiol; 1996 Feb; 270(2 Pt 2):H661-7. PubMed ID: 8779843 [TBL] [Abstract][Full Text] [Related]
2. Rapid microvessel rarefaction with elevated salt intake and reduced renal mass hypertension in rats. Hansen-Smith FM; Morris LW; Greene AS; Lombard JH Circ Res; 1996 Aug; 79(2):324-30. PubMed ID: 8756011 [TBL] [Abstract][Full Text] [Related]
3. Gender-specific protection from microvessel rarefaction in female hypertensive rats. Papanek PE; Rieder MJ; Lombard JH; Greene AS Am J Hypertens; 1998 Aug; 11(8 Pt 1):998-1005. PubMed ID: 9715794 [TBL] [Abstract][Full Text] [Related]
4. Response of resistance arteries to reduced PO2 and vasodilators during hypertension and elevated salt intake. Liu Y; Fredricks KT; Roman RJ; Lombard JH Am J Physiol; 1997 Aug; 273(2 Pt 2):H869-77. PubMed ID: 9277505 [TBL] [Abstract][Full Text] [Related]
5. Mathematical analysis of type-I and type-IIb muscle fiber force generation in renal hypertension. Rieder MJ; O'Drobinak DM; Tonellato PJ; Greene AS Ann Biomed Eng; 1996; 24(4):489-99. PubMed ID: 8841724 [TBL] [Abstract][Full Text] [Related]
6. Fatigability and blood flow in the rat gastrocnemius-plantaris-soleus after hindlimb suspension. McDonald KS; Delp MD; Fitts RH J Appl Physiol (1985); 1992 Sep; 73(3):1135-40. PubMed ID: 1400027 [TBL] [Abstract][Full Text] [Related]
7. Microvessel changes in hypertension measured by Griffonia simplicifolia I lectin. Greene AS; Lombard JH; Cowley AW; Hansen-Smith FM Hypertension; 1990 Jun; 15(6 Pt 2):779-83. PubMed ID: 2351431 [TBL] [Abstract][Full Text] [Related]
8. Reduced renal mass hypertension, but not high salt diet, alters skeletal muscle arteriolar distensibility and myogenic responses. Frisbee JC; Lombard JH Microvasc Res; 2000 Mar; 59(2):255-64. PubMed ID: 10684731 [TBL] [Abstract][Full Text] [Related]
9. Hemodynamic and microcirculatory changes during development of renal hypertension. Hernandez I; Greene AS Am J Physiol; 1995 Jan; 268(1 Pt 2):H33-8. PubMed ID: 7840279 [TBL] [Abstract][Full Text] [Related]
10. Chronic elevations in salt intake and reduced renal mass hypertension compromise mechanisms of arteriolar dilation. Frisbee JC; Lombard JH Microvasc Res; 1998 Nov; 56(3):218-27. PubMed ID: 9828160 [TBL] [Abstract][Full Text] [Related]
11. Soleus muscle contractile properties in hypertensive rats. Gray SD; Carlsen RC; Deng J Am J Physiol; 1994 Sep; 267(3 Pt 2):R735-9. PubMed ID: 8092317 [TBL] [Abstract][Full Text] [Related]
13. Hindlimb unloading-induced muscle atrophy and loss of function: protective effect of isometric exercise. Hurst JE; Fitts RH J Appl Physiol (1985); 2003 Oct; 95(4):1405-17. PubMed ID: 12819219 [TBL] [Abstract][Full Text] [Related]
14. Recovery of synergistic skeletal muscle function following ischemia. Carvalho AJ; Hollett P; McKee NH J Surg Res; 1995 Nov; 59(5):527-33. PubMed ID: 7474998 [TBL] [Abstract][Full Text] [Related]
15. Effects of alkalosis on skeletal muscle metabolism and performance during exercise. Spriet LL; Lindinger MI; Heigenhauser GJ; Jones NL Am J Physiol; 1986 Nov; 251(5 Pt 2):R833-9. PubMed ID: 3777210 [TBL] [Abstract][Full Text] [Related]
16. Acute elevations in salt intake and reduced renal mass hypertension compromise arteriolar dilation in rat cremaster muscle. Frisbee JC; Lombard JH Microvasc Res; 1999 May; 57(3):273-83. PubMed ID: 10329253 [TBL] [Abstract][Full Text] [Related]
17. Development and reversibility of altered skeletal muscle arteriolar structure and reactivity with high salt diet and reduced renal mass hypertension. Frisbee JC; Lombard JH Microcirculation; 1999 Sep; 6(3):215-25. PubMed ID: 10501095 [TBL] [Abstract][Full Text] [Related]