These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 8779930)
1. Sphingolipid actions on sodium and calcium currents of rat ventricular myocytes. Yasui K; Palade P Am J Physiol; 1996 Feb; 270(2 Pt 1):C645-9. PubMed ID: 8779930 [TBL] [Abstract][Full Text] [Related]
2. Ca2+ and voltage dependence of cardiac ryanodine receptor channel block by sphingosylphosphorylcholine. Yasukochi M; Uehara A; Kobayashi S; Berlin JR Pflugers Arch; 2003 Mar; 445(6):665-73. PubMed ID: 12632186 [TBL] [Abstract][Full Text] [Related]
3. Ca2+ signaling induced by sphingosylphosphorylcholine and sphingosine 1-phosphate via distinct mechanisms in rat glomerular mesangial cells. Chen PF; Chin TY; Chueh SH Kidney Int; 1998 Nov; 54(5):1470-83. PubMed ID: 9844123 [TBL] [Abstract][Full Text] [Related]
4. Sphingolipid derivatives modulate intracellular Ca2+ in rat synaptosomes. Miguel BG; Calcerrada MC; Catalán RE; Martínez AM Acta Neurobiol Exp (Wars); 2001; 61(2):113-7. PubMed ID: 11512408 [TBL] [Abstract][Full Text] [Related]
5. Novel neurotrophic effects of sphingosylphosphorylcholine in cerebellar granule neurons and in PC12 cells. Konno N; Nakamura A; Ikeno Y; Cheon SH; Kitamoto K; Arioka M Biochem Biophys Res Commun; 2007 Dec; 364(1):163-8. PubMed ID: 17935698 [TBL] [Abstract][Full Text] [Related]
6. Sphingolipids differentially regulate mitogen-activated protein kinases and intracellular Ca2+ in vascular smooth muscle: effects on CREB activation. Mathieson FA; Nixon GF Br J Pharmacol; 2006 Feb; 147(4):351-9. PubMed ID: 16402047 [TBL] [Abstract][Full Text] [Related]
7. Depression of excitability by sphingosine 1-phosphate in rat ventricular myocytes. MacDonell KL; Severson DL; Giles WR Am J Physiol; 1998 Dec; 275(6):H2291-9. PubMed ID: 9843831 [TBL] [Abstract][Full Text] [Related]
8. Control of cardiac Ca2+ levels. Inhibitory actions of sphingosine on Ca2+ transients and L-type Ca2+ channel conductance. McDonough PM; Yasui K; Betto R; Salviati G; Glembotski CC; Palade PT; Sabbadini RA Circ Res; 1994 Dec; 75(6):981-9. PubMed ID: 7955152 [TBL] [Abstract][Full Text] [Related]
9. The influence of zinc on the modulatory effect of sphingosylphosphorylcholine on Kv1.3 channels in human T lymphocytes. Teisseyre A; Michalak K Eur Biophys J; 2004 Oct; 33(6):543-8. PubMed ID: 15014908 [TBL] [Abstract][Full Text] [Related]
10. Effects of sphingosine-1-phosphate and sphingosylphosphorylcholine on intracellular Ca2+ and cell death in prostate cancer cell lines. Mulders AC; Nau S; Li Y; Michel MC Auton Autacoid Pharmacol; 2007 Oct; 27(4):173-9. PubMed ID: 18076478 [TBL] [Abstract][Full Text] [Related]
11. A role for G protein-coupled lysophospholipid receptors in sphingolipid-induced Ca2+ signaling in MC3T3-E1 osteoblastic cells. Lyons JM; Karin NJ J Bone Miner Res; 2001 Nov; 16(11):2035-42. PubMed ID: 11697799 [TBL] [Abstract][Full Text] [Related]
12. Effects of sphingosine derivatives on MC3T3-E1 pre-osteoblasts: psychosine elicits release of calcium from intracellualr stores. Liu R; Farach-Carson MC; Karin NJ Biochem Biophys Res Commun; 1995 Sep; 214(2):676-84. PubMed ID: 7677781 [TBL] [Abstract][Full Text] [Related]
13. Sphingosylphosphorylcholine increases calcium concentration in isolated brain nuclei. Calcerrada MC; Miguel BG; Catalan RE; Martinez AM Neurosci Res; 1999 Mar; 33(3):229-32. PubMed ID: 10211767 [TBL] [Abstract][Full Text] [Related]
15. Lysosphingomyelin-elicited Ca2+ mobilization from rat brain microsomes. Furuya S; Kurono S; Hirabayashi Y J Lipid Mediat Cell Signal; 1996 Sep; 14(1-3):303-11. PubMed ID: 8906576 [TBL] [Abstract][Full Text] [Related]
16. Signal transduction underlying the vascular effects of sphingosine 1-phosphate and sphingosylphosphorylcholine. Hemmings DG Naunyn Schmiedebergs Arch Pharmacol; 2006 Apr; 373(1):18-29. PubMed ID: 16570136 [TBL] [Abstract][Full Text] [Related]
17. Sphingosylphosphorylcholine activates Gq, Gi-2, and Gi-3 in thyroid FRTL-5 cells: implications for the activation of calcium fluxes and Na+-H+ exchange. Nikmo A; Björklund S; Vainio M; Ekokoski E; Törnquist K Biochem Biophys Res Commun; 1999 May; 258(3):812-5. PubMed ID: 10329469 [TBL] [Abstract][Full Text] [Related]
18. Sphingosylphosphorylcholine enhances calcium entry in thyroid FRO cells by a mechanism dependent on protein kinase C. Afrasiabi E; Blom T; Ekokoski E; Tuominen RK; Törnquist K Cell Signal; 2006 Oct; 18(10):1671-8. PubMed ID: 16490345 [TBL] [Abstract][Full Text] [Related]
19. Involvement of ryanodine receptors in sphingosylphosphorylcholine-induced calcium release from brain microsomes. Dettbarn C; Betto R; Salviati G; Sabbadini R; Palade P Brain Res; 1995 Jan; 669(1):79-85. PubMed ID: 7712168 [TBL] [Abstract][Full Text] [Related]
20. Sphingosylphosphorylcholine generates reactive oxygen species through calcium-, protein kinase Cdelta- and phospholipase D-dependent pathways. Jeon ES; Kang YJ; Song HY; Im DS; Kim HS; Ryu SH; Kim YK; Kim JH Cell Signal; 2005 Jun; 17(6):777-87. PubMed ID: 15722202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]