These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8781193)

  • 1. Magnesium transport in magnesium-loaded ferret red blood cells.
    Flatman PW; Smith LM
    Pflugers Arch; 1996 Oct; 432(6):995-1002. PubMed ID: 8781193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnesium transport in ferret red cells.
    Flatman PW; Smith LM
    J Physiol; 1990 Dec; 431():11-25. PubMed ID: 2100303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversibility of Na+/Mg2+ antiport in rat erythrocytes.
    Günther T; Vormann J
    Biochim Biophys Acta; 1995 Mar; 1234(1):105-10. PubMed ID: 7880850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium transport through the amiloride-sensitive Na-Mg pathway of hamster red cells.
    Xu W; Willis JS
    J Membr Biol; 1994 Sep; 141(3):277-87. PubMed ID: 7807526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms and regulation of Mg2+ efflux and Mg2+ influx.
    Günther T
    Miner Electrolyte Metab; 1993; 19(4-5):259-65. PubMed ID: 8264512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms, regulation and pathologic significance of Mg2+ efflux from erythrocytes.
    Günther T
    Magnes Res; 2006 Sep; 19(3):190-8. PubMed ID: 17172009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Na(+)-dependent Mg2+ efflux from Mg2(+)-loaded rat erythrocytes.
    Günther T; Vormann J; Höllriegl V
    Biochim Biophys Acta; 1990 Apr; 1023(3):455-61. PubMed ID: 2139797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of magnesium on potassium transport in ferret red cells.
    Flatman PW
    J Physiol; 1988 Mar; 397():471-87. PubMed ID: 3137332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mg2+ efflux is accomplished by an amiloride-sensitive Na+/Mg2+ antiport.
    Günther T; Vormann J
    Biochem Biophys Res Commun; 1985 Jul; 130(2):540-5. PubMed ID: 2992474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Na+/Mg2+ antiport by simultaneous 28Mg2+ influx.
    Günther T; Vormann J
    Biochem Biophys Res Commun; 1987 Nov; 148(3):1069-74. PubMed ID: 3689385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effect of imipramine and related compounds on Mg2+ efflux from rat erythrocytes.
    Ebel H; Hollstein M; Günther T
    Biochim Biophys Acta; 2004 Dec; 1667(2):132-40. PubMed ID: 15581848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-magnesium antiport in Retzius neurones of the leech Hirudo medicinalis.
    Günzel D; Schlue WR
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):595-608. PubMed ID: 8815196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of intracellular magnesium by Mg2+ efflux.
    Güther T; Vormann J; Förster R
    Biochem Biophys Res Commun; 1984 Feb; 119(1):124-31. PubMed ID: 6422934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-dependent magnesium uptake by ferret red cells.
    Flatman PW; Smith LM
    J Physiol; 1991 Nov; 443():217-30. PubMed ID: 1822527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species-specific Mn2+/Mg2+ antiport from Mg2(+)-loaded erythrocytes.
    Günther T; Vormann J; Cragoe EJ
    FEBS Lett; 1990 Feb; 261(1):47-51. PubMed ID: 1689673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some properties of a system for sodium-dependent outward movement of magnesium from metabolizing human red blood cells.
    Lüdi H; Schatzmann HJ
    J Physiol; 1987 Sep; 390():367-82. PubMed ID: 3443939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium transport mechanisms in dog red blood cells studied from measurements of initial flux rates.
    Altamirano AA; Beaugé L
    Cell Calcium; 1985 Dec; 6(6):503-25. PubMed ID: 3937600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A one-to-one Mg2+:Mn2+ exchange in rat erythrocytes.
    Féray JC; Garay R
    J Biol Chem; 1987 Apr; 262(12):5763-8. PubMed ID: 3571233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-independent Mg2+ efflux from Mg2+-loaded human erythrocytes.
    Günther T; Vormann J
    FEBS Lett; 1989 Apr; 247(2):181-4. PubMed ID: 2541009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+-activated Na+ fluxes in human red cells. Amiloride sensitivity.
    Escobales N; Canessa M
    J Biol Chem; 1985 Oct; 260(22):11914-23. PubMed ID: 3930487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.