These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 8781193)
21. Regulation of Na+/Mg2+ antiport in rat erythrocytes. Ebel H; Kreis R; Günther T Biochim Biophys Acta; 2004 Aug; 1664(2):150-60. PubMed ID: 15328047 [TBL] [Abstract][Full Text] [Related]
22. Iron transport into erythroid cells by the Na+/Mg2+ antiport. Stonell LM; Savigni DL; Morgan EH Biochim Biophys Acta; 1996 Jun; 1282(1):163-70. PubMed ID: 8679654 [TBL] [Abstract][Full Text] [Related]
23. Cold activation of Na influx through the Na-H exchange pathway in guinea pig red cells. Zhao Z; Willis JS J Membr Biol; 1993 Jan; 131(1):43-53. PubMed ID: 8381873 [TBL] [Abstract][Full Text] [Related]
24. Characterization of a sodium-dependent magnesium efflux from magnesium-loaded rat pancreatic acinar cells. Wisdom DM; Geada MM; Singh J Exp Physiol; 1996 May; 81(3):367-74. PubMed ID: 8737071 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of magnesium fluxes in rat erythrocytes using a stable isotope of magnesium. Chanson A; Feillet-Coudray C; Gueux E; Coudray C; Rambeau M; Mazur A; Wolf FI; Rayssiguier Y Front Biosci; 2005 May; 10():1720-6. PubMed ID: 15769661 [TBL] [Abstract][Full Text] [Related]
26. Characterization of Mg2+ efflux from human, rat and chicken erythrocytes. Günther T; Vormann J FEBS Lett; 1989 Jul; 250(2):633-7. PubMed ID: 2753156 [TBL] [Abstract][Full Text] [Related]
27. Further studies on alterations in magnesium binding during cold storage of erythrocytes. Bock JL; Yusuf Y Biochim Biophys Acta; 1988 Jun; 941(2):225-31. PubMed ID: 3132976 [TBL] [Abstract][Full Text] [Related]
28. Characterization of two Mg2+ transporters in sealed plasma membrane vesicles from rat liver. Cefaratti C; Romani A; Scarpa A Am J Physiol; 1998 Oct; 275(4):C995-C1008. PubMed ID: 9755053 [TBL] [Abstract][Full Text] [Related]
29. Increased Na+/Mg2+ antiport in erythrocytes of patients with cystic fibrosis. Vormann J; Magdorf K; Günther T; Wahn U Eur J Clin Chem Clin Biochem; 1994 Nov; 32(11):833-6. PubMed ID: 7888479 [TBL] [Abstract][Full Text] [Related]
30. Characterization of Mg(2+) efflux from rat erythrocytes non-loaded with Mg(2+). Ebel H; Günther T Biochim Biophys Acta; 1999 Oct; 1421(2):353-60. PubMed ID: 10518705 [TBL] [Abstract][Full Text] [Related]
31. Extracellular magnesium-dependent sodium efflux in squid giant axons. Gonzalez-Serratos H; Rasgado-Flores H Am J Physiol; 1990 Oct; 259(4 Pt 1):C541-8. PubMed ID: 2221036 [TBL] [Abstract][Full Text] [Related]
35. An Na+-stimulated Mg2+-transport system in human red blood cells. Féray JC; Garay R Biochim Biophys Acta; 1986 Mar; 856(1):76-84. PubMed ID: 3955035 [TBL] [Abstract][Full Text] [Related]
36. Na+/Mg2+ antiport in erythrocytes of spontaneously hypertensive rats: role of Mg2+ in the pathogenesis of hypertension. Ebel H; Günther T Magnes Res; 2005 Sep; 18(3):175-85. PubMed ID: 16259378 [TBL] [Abstract][Full Text] [Related]
37. Increased activity of the Mg2+/Na+ exchanger in red blood cells from essential hypertensive patients. Picado MJ; de la Sierra A; Aguilera MT; Coca A; Urbano-Márquez A Hypertension; 1994 Jun; 23(6 Pt 2):987-91. PubMed ID: 8206640 [TBL] [Abstract][Full Text] [Related]
38. Stimulation of Na+/Mg2+ antiport in rat erythrocytes by intracellular Cl-. Ebel H; Günther T FEBS Lett; 2003 May; 543(1-3):103-7. PubMed ID: 12753914 [TBL] [Abstract][Full Text] [Related]
39. Characterization of magnesium efflux from Ehrlich ascites tumor cells. Wolf FI; Di Francesco A; Cittadini A Arch Biochem Biophys; 1994 Feb; 308(2):335-41. PubMed ID: 7509147 [TBL] [Abstract][Full Text] [Related]