These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 8782260)
1. A fluorescent vesicle system for the measurement of blood velocity in the choroidal vessels. Peyman GA; Khoobehi B; Shaibani S; Shamsnia S; Ribeiro I Ophthalmic Surg Lasers; 1996 Jun; 27(6):459-66. PubMed ID: 8782260 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of leukocyte dynamics in choroidal circulation with indocyanine green-stained leukocytes. Takasu I; Shiraga F; Okanouchi T; Tsuchida Y; Ohtsuki H Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2844-8. PubMed ID: 10967036 [TBL] [Abstract][Full Text] [Related]
4. Visualization of leukocyte dynamics in the choroid with indocyanine green. Matsuda N; Ogura Y; Nishiwaki H; Miyamoto K; Matsubara T; Kiryu J; Honda Y Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2228-33. PubMed ID: 8843909 [TBL] [Abstract][Full Text] [Related]
5. Fluorescent microsphere imaging: a particle-tracking approach to the hemodynamic assessment of the retina and choroid. Khoobehi B; Shoelson B; Zhang YZ; Peyman GA Ophthalmic Surg Lasers; 1997 Nov; 28(11):937-47. PubMed ID: 9387182 [TBL] [Abstract][Full Text] [Related]
6. Fluorescent vesicle system. A new technique for measuring blood flow in the retina. Khoobehi B; Peyman GA Ophthalmology; 1994 Oct; 101(10):1716-26. PubMed ID: 7936571 [TBL] [Abstract][Full Text] [Related]
7. An image processing approach to characterizing choroidal blood flow. Klein GJ; Baumgartner RH; Flower RW Invest Ophthalmol Vis Sci; 1990 Apr; 31(4):629-37. PubMed ID: 2335432 [TBL] [Abstract][Full Text] [Related]
8. Digital image analysis of choroidal hypoperfusion in indocyanine green angiography using a choroid to disc gray-scale ratio. Miki N; Kohno T; Shiraki K; Nadachi R; Okazaki Y; Suehiro J; Uenishi Y; Miki T Osaka City Med J; 2007 Jun; 53(1):35-47. PubMed ID: 17867632 [TBL] [Abstract][Full Text] [Related]
9. Measurement of blood flow velocity in feeder vessels of choroidal neovascularization by a scanning laser ophthalmoscope and image analysis system. Yamamoto Y Jpn J Ophthalmol; 2003; 47(1):53-8. PubMed ID: 12586178 [TBL] [Abstract][Full Text] [Related]
10. ICGA-guided laser photocoagulation of feeder vessels of choroidal neovascular membranes in age-related macular degeneration. Indocyanine green angiography. Desatnik H; Treister G; Alhalel A; Krupsky S; Moisseiev J Retina; 2000; 20(2):143-50. PubMed ID: 10783946 [TBL] [Abstract][Full Text] [Related]
11. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. Olsen TW; Feng X; Wabner K; Conston SR; Sierra DH; Folden DV; Smith ME; Cameron JD Am J Ophthalmol; 2006 Nov; 142(5):777-87. PubMed ID: 16989764 [TBL] [Abstract][Full Text] [Related]
12. In vivo cell tracking by scanning laser ophthalmoscopy: quantification of leukocyte kinetics. Hossain P; Liversidge J; Cree MJ; Manivannan A; Vieira P; Sharp PF; Brown GC; Forrester JV Invest Ophthalmol Vis Sci; 1998 Sep; 39(10):1879-87. PubMed ID: 9727411 [TBL] [Abstract][Full Text] [Related]
13. Indocyanine green angiography patterns of zones of relative decreased choroidal blood flow in patients with exudative age-related macular degeneration. Goldberg MF; Dhaliwal RS; Olk RJ Ophthalmic Surg Lasers; 1998 May; 29(5):385-90. PubMed ID: 9599363 [TBL] [Abstract][Full Text] [Related]
14. Feasibility of extracting velocity distribution in choriocapillaris in human eyes from ICG dye angiograms. Zhu L; Zheng Y; von Kerczek CH; Topoleski LD; Flower RW J Biomech Eng; 2006 Apr; 128(2):203-9. PubMed ID: 16524331 [TBL] [Abstract][Full Text] [Related]
15. [Measurement of flow velocity in feeder vessels of choroidal neovascularization with a scanning laser ophthalmoscope and image analysis system]. Yamamoto Y Nippon Ganka Gakkai Zasshi; 2002 May; 106(5):287-92. PubMed ID: 12048924 [TBL] [Abstract][Full Text] [Related]
16. Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells. Flower R; Peiretti E; Magnani M; Rossi L; Serafini S; Gryczynski Z; Gryczynski I Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5510-6. PubMed ID: 18708621 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of radial optic neurotomy for central retinal vein occlusion by indocyanine green videoangiography and image analysis. Nomoto H; Shiraga F; Yamaji H; Kageyama M; Takenaka H; Baba T; Tsuchida Y Am J Ophthalmol; 2004 Oct; 138(4):612-9. PubMed ID: 15488789 [TBL] [Abstract][Full Text] [Related]
19. Histologic localization of indocyanine green dye in aging primate and human ocular tissues with clinical angiographic correlation. Chang AA; Morse LS; Handa JT; Morales RB; Tucker R; Hjelmeland L; Yannuzzi LA Ophthalmology; 1998 Jun; 105(6):1060-8. PubMed ID: 9627657 [TBL] [Abstract][Full Text] [Related]
20. Retinal pigment epithelium atrophy secondary to dilated choroidal artery in the macula of a highly myopic patient. Hayashi K; Ohno-Matsui K; Kojima A; Yoshida T; Futagami S; Tokoro T; Mochizuki M Jpn J Ophthalmol; 2005; 49(2):153-8. PubMed ID: 15838734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]