These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 8782404)

  • 1. Maltal binding mechanism and a role of the mobile loop of soybean beta-amylase.
    Kunikata T; Nishimura S; Nitta Y
    Biosci Biotechnol Biochem; 1996 Jul; 60(7):1104-8. PubMed ID: 8782404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maltal Binding Mechanism and a Role of the Mobile Loop of Soybean β-Amylase.
    Toshiko K; Shigenori N; Yasunori N
    Biosci Biotechnol Biochem; 1996 Jan; 60(7):1104-8. PubMed ID: 27299713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of soybean beta-amylase reacted with beta-maltose and maltal: active site components and their apparent roles in catalysis.
    Mikami B; Degano M; Hehre EJ; Sacchettini JC
    Biochemistry; 1994 Jun; 33(25):7779-87. PubMed ID: 8011643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of maltal hydration catalyzed by beta-amylase: role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase.
    Kitahata S; Chiba S; Brewer CF; Hehre EJ
    Biochemistry; 1991 Jul; 30(27):6769-75. PubMed ID: 1829637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic flexibility of glycosylases. The hydration of maltal by beta-amylase to form 2-deoxymaltose.
    Hehre EJ; Kitahata S; Brewer CF
    J Biol Chem; 1986 Feb; 261(5):2147-53. PubMed ID: 2418022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis of threonine 342 mutants of soybean beta-amylase: role of a conformational change of the inner loop in the catalytic mechanism.
    Kang YN; Tanabe A; Adachi M; Utsumi S; Mikami B
    Biochemistry; 2005 Apr; 44(13):5106-16. PubMed ID: 15794648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose.
    Mikami B; Adachi M; Kage T; Sarikaya E; Nanmori T; Shinke R; Utsumi S
    Biochemistry; 1999 Jun; 38(22):7050-61. PubMed ID: 10353816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of Glu186 and Glu380 in the catalytic reaction of soybean beta-amylase.
    Kang YN; Adachi M; Utsumi S; Mikami B
    J Mol Biol; 2004 Jun; 339(5):1129-40. PubMed ID: 15178253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomy of a conformational transition of beta-strand 6 in soybean beta-amylase caused by substrate (or inhibitor) binding to the catalytical site.
    Pujadas G; Palau J
    Protein Sci; 1997 Nov; 6(11):2409-17. PubMed ID: 9385643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of the pH optimum of Bacillus cereus beta-amylase: conversion of the pH optimum from a bacterial type to a higher-plant type.
    Hirata A; Adachi M; Utsumi S; Mikami B
    Biochemistry; 2004 Oct; 43(39):12523-31. PubMed ID: 15449941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated docking of maltose, 2-deoxymaltose, and maltotetraose into the soybean beta-amylase active site.
    Laederach A; Dowd MK; Coutinho PM; Reilly PJ
    Proteins; 1999 Nov; 37(2):166-75. PubMed ID: 10584063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and structural analysis of enzyme sliding on a substrate: multiple attack in beta-amylase.
    Ishikawa K; Nakatani H; Katsuya Y; Fukazawa C
    Biochemistry; 2007 Jan; 46(3):792-8. PubMed ID: 17223700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a catalytic site mutant of beta-amylase from Bacillus cereus var. mycoides cocrystallized with maltopentaose.
    Miyake H; Kurisu G; Kusunoki M; Nishimura S; Kitamura S; Nitta Y
    Biochemistry; 2003 May; 42(19):5574-81. PubMed ID: 12741813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of Glu380 and Leu383 of soybean beta-amylase. A proposed action mechanism.
    Totsuka A; Fukazawa C
    Eur J Biochem; 1996 Sep; 240(3):655-9. PubMed ID: 8856067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of soybean beta-amylase with glucose.
    Nomura K; Mikami B; Morita Y
    J Biochem; 1986 Nov; 100(5):1175-83. PubMed ID: 2434466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of beta-amylase from Bacillus cereus var mycoides in complexes with substrate analogs and affinity-labeling reagents.
    Oyama T; Miyake H; Kusunoki M; Nitta Y
    J Biochem; 2003 Apr; 133(4):467-74. PubMed ID: 12761294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and enzymatic analysis of soybean beta-amylase mutants with increased pH optimum.
    Hirata A; Adachi M; Sekine A; Kang YN; Utsumi S; Mikami B
    J Biol Chem; 2004 Feb; 279(8):7287-95. PubMed ID: 14638688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis of aryl beta-maltotriosides by sweet potato beta-amylase and soybean beta-amylase.
    Suetsugu N; Takeo K; Sanai Y; Kuge T
    J Biochem; 1978 Feb; 83(2):473-8. PubMed ID: 147271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of moranoline, 4-O-alpha-D-glucopyranosylmoranoline and their N-substituted derivatives on thermostability of cyclodextrin glycosyltransferase, glucoamylase, and beta-amylase.
    Maruo S; Kyotani Y; Yamamoto H; Miyazaki K; Ogawa H; Sakai T; Kojima M; Ezure Y
    Biosci Biotechnol Biochem; 1993 Aug; 57(8):1294-8. PubMed ID: 7764015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated docking of alpha-(1-->4)- and alpha-(1-->6)-linked glucosyl trisaccharides and maltopentaose into the soybean beta-amylase active site.
    Rockey WM; Laederach A; Reilly PJ
    Proteins; 2000 Aug; 40(2):299-309. PubMed ID: 10842343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.