These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 8782895)
1. Intense peripheral electrical stimulation differentially inhibits tail vs. limb withdrawal reflexes in the rat. Romita VV; Henry JL Brain Res; 1996 May; 720(1-2):45-53. PubMed ID: 8782895 [TBL] [Abstract][Full Text] [Related]
2. Intense peripheral electrical stimulation evokes brief and persistent inhibition of the nociceptive tail withdrawal reflex in the rat. Romita VV; Yashpal K; Hui-Chan CW; Henry JL Brain Res; 1997 Jul; 761(2):192-202. PubMed ID: 9252016 [TBL] [Abstract][Full Text] [Related]
3. Parametric studies on electroacupuncture-like stimulation in a rat model: effects of intensity, frequency, and duration of stimulation on evoked antinociception. Romita VV; Suk A; Henry JL Brain Res Bull; 1997; 42(4):289-96. PubMed ID: 9043715 [TBL] [Abstract][Full Text] [Related]
4. Midbrain suppression of limb withdrawal and tail flick reflexes in the rat: correlates with descending inhibition of sacral spinal neurons. Carstens E; Douglass DK J Neurophysiol; 1995 Jun; 73(6):2179-94. PubMed ID: 7666131 [TBL] [Abstract][Full Text] [Related]
5. Spinal mu-, delta- and kappa-opioid receptors mediate intense stimulation-elicited inhibition of a nociceptive reflex in the rat. Romita VV; Henry JL Eur J Pharmacol; 1998 Sep; 357(2-3):127-38. PubMed ID: 9797028 [TBL] [Abstract][Full Text] [Related]
6. Inhibition and facilitation of different nocifensor reflexes by spatially remote noxious stimuli. Morgan MM; Heinricher MM; Fields HL J Neurophysiol; 1994 Sep; 72(3):1152-60. PubMed ID: 7807200 [TBL] [Abstract][Full Text] [Related]
7. NMDA receptor involvement in spinal inhibitory controls of nociception in the rat. Romita VV; Henry JL Neuroreport; 1996 Jul; 7(11):1705-8. PubMed ID: 8905647 [TBL] [Abstract][Full Text] [Related]
8. Paradoxical inhibition of nociceptive neurons in the dorsal horn of the rat spinal cord during a nociceptive hindlimb reflex. Morgan MM Neuroscience; 1999 Jan; 88(2):489-98. PubMed ID: 10197769 [TBL] [Abstract][Full Text] [Related]
9. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury. Bennett DJ; Sanelli L; Cooke CL; Harvey PJ; Gorassini MA J Neurophysiol; 2004 May; 91(5):2247-58. PubMed ID: 15069102 [TBL] [Abstract][Full Text] [Related]
10. Pronounced changes in the activity of nociceptive modulatory neurons in the rostral ventromedial medulla in response to prolonged thermal noxious stimuli. Morgan MM; Fields HL J Neurophysiol; 1994 Sep; 72(3):1161-70. PubMed ID: 7807201 [TBL] [Abstract][Full Text] [Related]
11. Cutaneous inhibitory receptive fields of withdrawal reflexes in the decerebrate spinal rat. Weng HR; Schouenborg J J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):253-65. PubMed ID: 8735710 [TBL] [Abstract][Full Text] [Related]
12. Postnatal development of the nociceptive withdrawal reflexes in the rat: a behavioural and electromyographic study. Holmberg H; Schouenborg J J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):239-52. PubMed ID: 8735709 [TBL] [Abstract][Full Text] [Related]
13. Effects of thalamic nucleus submedius lesions on the tail flick reflex inhibition evoked by hindlimb electrical stimulation in the rat. Zhang YQ; Tang JS; Yuan B; Jia H Neuroreport; 1995 Jun; 6(9):1237-40. PubMed ID: 7669977 [TBL] [Abstract][Full Text] [Related]
14. Spastic long-lasting reflexes of the chronic spinal rat studied in vitro. Li Y; Harvey PJ; Li X; Bennett DJ J Neurophysiol; 2004 May; 91(5):2236-46. PubMed ID: 15069101 [TBL] [Abstract][Full Text] [Related]
15. Unilateral subcutaneous bee venom but not formalin injection causes contralateral hypersensitized wind-up and after-discharge of the spinal withdrawal reflex in anesthetized spinal rats. You HJ; Arendt-Nielsen L Exp Neurol; 2005 Sep; 195(1):148-60. PubMed ID: 15950221 [TBL] [Abstract][Full Text] [Related]
16. Functional MRI at 4.7 tesla of the rat brain during electric stimulation of forepaw, hindpaw, or tail in single- and multislice experiments. Spenger C; Josephson A; Klason T; Hoehn M; Schwindt W; Ingvar M; Olson L Exp Neurol; 2000 Dec; 166(2):246-53. PubMed ID: 11085890 [TBL] [Abstract][Full Text] [Related]
17. Effects of peripheral inputs from hindlimb on the monosynaptic reflex of motoneurons innervating tail muscles. Wada N Arch Ital Biol; 1991 Sep; 129(4):289-94. PubMed ID: 1789716 [TBL] [Abstract][Full Text] [Related]
18. Behavioral analysis of diffuse noxious inhibitory controls (DNIC): antinociception and escape reactions. Morgan MM; Whitney PK Pain; 1996 Aug; 66(2-3):307-12. PubMed ID: 8880854 [TBL] [Abstract][Full Text] [Related]
19. Responses of motor units during the hind limb flexion withdrawal reflex evoked by noxious skin heating: phasic and prolonged suppression by midbrain stimulation and comparison with simultaneously recorded dorsal horn units. Carstens E; Campell IG Pain; 1992 Feb; 48(2):215-226. PubMed ID: 1589240 [TBL] [Abstract][Full Text] [Related]
20. Direct comparison of heat-evoked activity of nociceptive neurons in the dorsal horn with the hindpaw withdrawal reflex in the rat. Morgan MM J Neurophysiol; 1998 Jan; 79(1):174-80. PubMed ID: 9425188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]