These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 8783016)

  • 1. S-pyridylethylation of intact polyacrylamide gels and in situ digestion of electrophoretically separated proteins: a rapid mass spectrometric method for identifying cysteine-containing peptides.
    Moritz RL; Eddes JS; Reid GE; Simpson RJ
    Electrophoresis; 1996 May; 17(5):907-17. PubMed ID: 8783016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-gel s-pyridylethylation of gel-resolved proteins: whole gel method.
    Simpson RJ
    CSH Protoc; 2008 Jun; 2008():pdb.prot4604. PubMed ID: 21356843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-gel s-pyridylethylation of gel-resolved proteins: individual spot method.
    Simpson RJ
    CSH Protoc; 2008 Jun; 2008():pdb.prot4605. PubMed ID: 21356844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced in situ gel digestion of electrophoretically separated proteins with automated peptide elution onto mini reversed-phase columns.
    Eckerskorn C; Grimm R
    Electrophoresis; 1996 May; 17(5):899-906. PubMed ID: 8783015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid mass spectrometric identification of proteins from two-dimensional polyacrylamide gels after in gel proteolytic digestion.
    Li G; Waltham M; Anderson NL; Unsworth E; Treston A; Weinstein JN
    Electrophoresis; 1997; 18(3-4):391-402. PubMed ID: 9150917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid identification of comigrating gel-isolated proteins by ion trap-mass spectrometry.
    Arnott D; Henzel WJ; Stults JT
    Electrophoresis; 1998 May; 19(6):968-80. PubMed ID: 9638943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary column chromatography improves sample preparation for mass spectrometric analysis: complete characterization of human alpha-enolase from two-dimensional gels following in situ proteolytic digestion.
    Reid GE; Rasmussen RK; Dorow DS; Simpson RJ
    Electrophoresis; 1998 May; 19(6):946-55. PubMed ID: 9638941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of in-gel and on-membrane digestion methods at low to sub-pmol level for subsequent peptide and fragment-ion mass analysis using matrix-assisted laser-desorption/ionization mass spectrometry.
    Courchesne PL; Luethy R; Patterson SD
    Electrophoresis; 1997; 18(3-4):369-81. PubMed ID: 9150915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome analysis of polyacrylamide gel-separated proteins visualized by reversible negative staining using imidazole-zinc salts.
    Castellanos-Serra L; Proenza W; Huerta V; Moritz RL; Simpson RJ
    Electrophoresis; 1999; 20(4-5):732-7. PubMed ID: 10344241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal sequences from proteins digested in polyacrylamide gels.
    Jenö P; Mini T; Moes S; Hintermann E; Horst M
    Anal Biochem; 1995 Jan; 224(1):75-82. PubMed ID: 7710119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of proteins in polyacrylamide gels by mass spectrometric peptide mapping combined with database search.
    Mørtz E; Vorm O; Mann M; Roepstorff P
    Biol Mass Spectrom; 1994 May; 23(5):249-61. PubMed ID: 8204681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automation of micro-preparation and enzymatic cleavage of gel electrophoretically separated proteins.
    Houthaeve T; Gausepohl H; Mann M; Ashman K
    FEBS Lett; 1995 Nov; 376(1-2):91-4. PubMed ID: 8521975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-gel derivatization of proteins for cysteine-specific cleavages and their analysis by mass spectrometry.
    Thevis M; Ogorzalek Loo RR; Loo JA
    J Proteome Res; 2003; 2(2):163-72. PubMed ID: 12716130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for internal amino acid sequence analysis of proteins separated by polyacrylamide gel electrophoresis.
    Ward LD; Reid GE; Moritz RL; Simpson RJ
    J Chromatogr; 1990 Oct; 519(1):199-216. PubMed ID: 2077045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized sample-processing time and peptide recovery for the mass spectrometric analysis of protein digests.
    Terry DE; Umstot E; Desiderio DM
    J Am Soc Mass Spectrom; 2004 Jun; 15(6):784-94. PubMed ID: 15144968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical and micropreparative peptide mapping by high performance liquid chromatography/electrospray mass spectrometry of proteins purified by gel electrophoresis.
    Hess D; Covey TC; Winz R; Brownsey RW; Aebersold R
    Protein Sci; 1993 Aug; 2(8):1342-51. PubMed ID: 8104612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-line liquid chromatography/electrospray tandem mass spectrometry to investigate acrylamide adducts with cysteine residues: implications for polyacrylamide gel electrophoresis separations of proteins.
    Garzotti M; Rovatti L; Hamdan M
    Rapid Commun Mass Spectrom; 1998; 12(8):484-8. PubMed ID: 9586236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkylation of cysteine with acrylamide for protein sequence analysis.
    Brune DC
    Anal Biochem; 1992 Dec; 207(2):285-90. PubMed ID: 1481983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin and control of ex vivo oxidative peptide modifications prior to mass spectrometry analysis.
    Froelich JM; Reid GE
    Proteomics; 2008 Apr; 8(7):1334-45. PubMed ID: 18306178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.