These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8783283)

  • 1. Partial suppression of GABAA-mediated inhibition induces spatially restricted epileptiform activity in guinea pig neocortical slices.
    Langenstroth M; Albowitz B; Kuhnt U
    Neurosci Lett; 1996 May; 210(2):103-6. PubMed ID: 8783283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition.
    Chagnac-Amitai Y; Connors BW
    J Neurophysiol; 1989 Apr; 61(4):747-58. PubMed ID: 2542471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spread of epileptiform potentials in the neocortical slice: recordings with voltage-sensitive dyes.
    Albowitz B; Kuhnt U
    Brain Res; 1993 Dec; 631(2):329-33. PubMed ID: 8131062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatio-temporal distribution of epileptiform activity in slices from human neocortex: recordings with voltage-sensitive dyes.
    Albowitz B; Kuhnt U; Köhling R; Lücke A; Straub H; Speckmann EJ; Tuxhorn I; Wolf P; Pannek H; Oppel F
    Epilepsy Res; 1998 Sep; 32(1-2):224-32. PubMed ID: 9761323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epileptiform activity in the guinea-pig neocortical slice spreads preferentially along supragranular layers--recordings with voltage-sensitive dyes.
    Albowitz B; Kuhnt U
    Eur J Neurosci; 1995 Jun; 7(6):1273-84. PubMed ID: 7582100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical recording of epileptiform voltage changes in the neocortical slice.
    Albowitz B; Kuhnt U; Ehrenreich L
    Exp Brain Res; 1990; 81(2):241-56. PubMed ID: 2397755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local synaptic circuits and epileptiform activity in slices of neocortex from children with intractable epilepsy.
    Tasker JG; Peacock WJ; Dudek FE
    J Neurophysiol; 1992 Mar; 67(3):496-507. PubMed ID: 1374457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus-induced patterns of bioelectric activity in human neocortical tissue recorded by a voltage sensitive dye.
    Straub H; Kuhnt U; Höhling JM; Köhling R; Gorji A; Kuhlmann D; Tuxhorn I; Ebner A; Wolf P; Pannek HW; Lahl R; Speckmann EJ
    Neuroscience; 2003; 121(3):587-604. PubMed ID: 14568020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epileptiform activity in the nucleus accumbens induced by GABA(A) receptor antagonists in rat forebrain slices is of cortical origin.
    Buckby LE; Lacey MG
    Exp Brain Res; 2001 Nov; 141(2):146-52. PubMed ID: 11713626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAA-mediated inhibition and in vitro epileptogenesis in the human neocortex.
    Avoli M; Louvel J; Drapeau C; Pumain R; Kurcewicz I
    J Neurophysiol; 1995 Feb; 73(2):468-84. PubMed ID: 7760112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal distribution of intracellular calcium transients during epileptiform activity in guinea pig hippocampal slices.
    Albowitz B; König P; Kuhnt U
    J Neurophysiol; 1997 Jan; 77(1):491-501. PubMed ID: 9120590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal-parahippocampal region of the isolated Guinea pig brain.
    Uva L; Librizzi L; Wendling F; de Curtis M
    Epilepsia; 2005 Dec; 46(12):1914-25. PubMed ID: 16393157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological unmasking of new glutamatergic pathways in the dentate gyrus of hippocampal slices from kainate-induced epileptic rats.
    Patrylo PR; Dudek FE
    J Neurophysiol; 1998 Jan; 79(1):418-29. PubMed ID: 9425210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties and synaptic mechanisms of bicuculline-induced epileptiform bursts in neocortical slices from children with intractable epilepsy.
    Kim YI; Peacock WJ; Dudek FE
    J Neurophysiol; 1993 Nov; 70(5):1759-66. PubMed ID: 7905030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological mapping of GABAA receptor-mediated inhibition in adult rat somatosensory cortex.
    Salin PA; Prince DA
    J Neurophysiol; 1996 Apr; 75(4):1589-600. PubMed ID: 8727398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spread of epileptiform activity in the immature rat neocortex studied with voltage-sensitive dyes and laser scanning microscopy.
    Sutor B; Hablitz JJ; Rucker F; ten Bruggencate G
    J Neurophysiol; 1994 Oct; 72(4):1756-68. PubMed ID: 7823100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous interictal-like activity originates in multiple areas of the CA2-CA3 region of hippocampal slices.
    Colom LV; Saggau P
    J Neurophysiol; 1994 Apr; 71(4):1574-85. PubMed ID: 8035236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging the induction and spread of seizure activity in the isolated brain of the guinea pig: the roles of GABA and glutamate receptors.
    Federico P; MacVicar BA
    J Neurophysiol; 1996 Nov; 76(5):3471-92. PubMed ID: 8930287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decrease in synaptic transmission can reverse the propagation direction of epileptiform activity in hippocampus in vivo.
    Feng Z; Durand DM
    J Neurophysiol; 2005 Mar; 93(3):1158-64. PubMed ID: 15496488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAA inhibition controls the calcium flows during NMDA-dependent epileptiform activity in human epileptogenic neocortex.
    Louvel J; Pumain R; Avoli M; Kurcewicz I; Devaux B; Chodkiewicz JP
    Epilepsy Res Suppl; 1996; 12():293-300. PubMed ID: 9302528
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.