These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 8783811)
1. Differential mechanisms of cell killing by redox cycling and arylating quinones. Henry TR; Wallace KB Arch Toxicol; 1996; 70(8):482-9. PubMed ID: 8783811 [TBL] [Abstract][Full Text] [Related]
2. Differential mechanisms of induction of the mitochondrial permeability transition by quinones of varying chemical reactivities. Henry TR; Wallace KB Toxicol Appl Pharmacol; 1995 Oct; 134(2):195-203. PubMed ID: 7570595 [TBL] [Abstract][Full Text] [Related]
3. Benzoquinone inhibits the voltage-dependent induction of the mitochondrial permeability transition caused by redox-cycling naphthoquinones. Palmeira CM; Wallace KB Toxicol Appl Pharmacol; 1997 Apr; 143(2):338-47. PubMed ID: 9144450 [TBL] [Abstract][Full Text] [Related]
4. ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition. Nieminen AL; Saylor AK; Herman B; Lemasters JJ Am J Physiol; 1994 Jul; 267(1 Pt 1):C67-74. PubMed ID: 8048493 [TBL] [Abstract][Full Text] [Related]
5. The role of redox cycling versus arylation in quinone-induced mitochondrial dysfunction: a mechanistic approach in classifying reactive toxicants. Henry TR; Wallace KB SAR QSAR Environ Res; 1995; 4(2-3):97-108. PubMed ID: 8765905 [TBL] [Abstract][Full Text] [Related]
6. Differential effects of redox-cycling and arylating quinones on trans-plasma membrane electron transport. Tan AS; Berridge MV Biofactors; 2008; 34(3):183-90. PubMed ID: 19734119 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: protection by fructose, cyclosporin A and trifluoperazine. Imberti R; Nieminen AL; Herman B; Lemasters JJ J Pharmacol Exp Ther; 1993 Apr; 265(1):392-400. PubMed ID: 8474021 [TBL] [Abstract][Full Text] [Related]
8. Modifications of cardiac contractility by redox cycling alkylating and mixed redox cycling/alkylating quinones. Floreani M; Carpenedo F J Pharmacol Exp Ther; 1991 Jan; 256(1):243-8. PubMed ID: 1846415 [TBL] [Abstract][Full Text] [Related]
9. Role of thiol homeostasis and adenine nucleotide metabolism in the protective effects of fructose in quinone-induced cytotoxicity in rat hepatocytes. Toxopeus C; van Holsteijn I; de Winther MP; van den Dobbelsteen D; Horbach GJ; Blaauboer BJ; Noordhoek J Biochem Pharmacol; 1994 Nov; 48(9):1682-92. PubMed ID: 7980636 [TBL] [Abstract][Full Text] [Related]
10. Interconversion of NAD(H) to NADP(H). A cellular response to quinone-induced oxidative stress in isolated hepatocytes. Stubberfield CR; Cohen GM Biochem Pharmacol; 1989 Aug; 38(16):2631-7. PubMed ID: 2764986 [TBL] [Abstract][Full Text] [Related]
11. Alterations in hepatocyte cytoskeleton caused by redox cycling and alkylating quinones. Thor H; Mirabelli F; Salis A; Cohen GM; Bellomo G; Orrenius S Arch Biochem Biophys; 1988 Nov; 266(2):397-407. PubMed ID: 3190234 [TBL] [Abstract][Full Text] [Related]
12. The effects of fructose on adenosine triphosphate depletion following mitochondrial dysfunction and lethal cell injury in isolated rat hepatocytes. Cannon JR; Harvison PJ; Rush GF Toxicol Appl Pharmacol; 1991 May; 108(3):407-16. PubMed ID: 2020968 [TBL] [Abstract][Full Text] [Related]
13. Cytotoxicity of menadione and related quinones in freshly isolated rat hepatocytes: effects on thiol homeostasis and energy charge. Toxopeus C; van Holsteijn I; Thuring JW; Blaauboer BJ; Noordhoek J Arch Toxicol; 1993; 67(10):674-9. PubMed ID: 8135657 [TBL] [Abstract][Full Text] [Related]
14. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Gant TW; Rao DN; Mason RP; Cohen GM Chem Biol Interact; 1988; 65(2):157-73. PubMed ID: 2835188 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the effects of redox cycling and arylating quinones on hepatobiliary function and glutathione homeostasis in rat hepatocyte couplets. Stone V; Coleman R; Chipman JK Toxicol Appl Pharmacol; 1996 Jun; 138(2):195-200. PubMed ID: 8658520 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of toxicity of naphthoquinones to isolated hepatocytes. Miller MG; Rodgers A; Cohen GM Biochem Pharmacol; 1986 Apr; 35(7):1177-84. PubMed ID: 2421729 [TBL] [Abstract][Full Text] [Related]
17. Taurine protects against the cytotoxicity of hydrazine, 1,4-naphthoquinone and carbon tetrachloride in isolated rat hepatocytes. Waterfield CJ; Mesquita M; Parnham P; Timbrell JA Biochem Pharmacol; 1993 Aug; 46(4):589-95. PubMed ID: 8363631 [TBL] [Abstract][Full Text] [Related]
18. The relative importance of oxidative stress versus arylation in the mechanism of quinone-induced cytotoxicity to platelets. Seung SA; Lee JY; Lee MY; Park JS; Chung JH Chem Biol Interact; 1998 May; 113(2):133-44. PubMed ID: 9717514 [TBL] [Abstract][Full Text] [Related]
19. Discriminating redox cycling and arylation pathways of reactive chemical toxicity in trout hepatocytes. Schmieder PK; Tapper MA; Kolanczyk RC; Hammermeister DE; Sheedy BR; Denny JS Toxicol Sci; 2003 Mar; 72(1):66-76. PubMed ID: 12604835 [TBL] [Abstract][Full Text] [Related]
20. Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells. Ludewig G; Dogra S; Glatt H Environ Health Perspect; 1989 Jul; 82():223-8. PubMed ID: 2792044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]