BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8784839)

  • 1. A drainage basin perspective of mercury transport and bioaccumulation: Onondaga Lake, New York.
    Bigham GN; Vandal GM
    Neurotoxicology; 1996; 17(1):279-90. PubMed ID: 8784839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total and methyl mercury transformations and mass loadings within a wastewater treatment plant and the impact of the effluent discharge to an alkaline hypereutrophic lake.
    Gbondo-Tugbawa SS; McAlear JA; Driscoll CT; Sharpe CW
    Water Res; 2010 May; 44(9):2863-75. PubMed ID: 20303566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subsurface sources of methyl mercury to Lake Superior from a wetland-forested watershed.
    Stoor RW; Hurley JP; Babiarz CL; Armstrong DE
    Sci Total Environ; 2006 Sep; 368(1):99-110. PubMed ID: 16337675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Watershed and discharge influences on the phase distribution and tributary loading of total mercury and methylmercury into Lake Superior.
    Babiarz C; Hoffmann S; Wieben A; Hurley J; Andren A; Shafer M; Armstrong D
    Environ Pollut; 2012 Feb; 161():299-310. PubMed ID: 22019205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model approach for evaluating effects of remedial actions on mercury speciation and transport in a lake system.
    Kim D; Wang Q; Sorial GA; Dionysiou DD; Timberlake D
    Sci Total Environ; 2004 Jul; 327(1-3):1-15. PubMed ID: 15172567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streamwater fluxes of total mercury and methylmercury into and out of Lake Champlain.
    Shanley JB; Chalmers AT
    Environ Pollut; 2012 Feb; 161():311-20. PubMed ID: 21835521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY.
    Matthews DA; Babcock DB; Nolan JG; Prestigiacomo AR; Effler SW; Driscoll CT; Todorova SG; Kuhr KM
    Environ Res; 2013 Aug; 125():52-60. PubMed ID: 23683521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury mobilization in urban stormwater runoff.
    Eckley CS; Branfireun B
    Sci Total Environ; 2008 Sep; 403(1-3):164-77. PubMed ID: 18582918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury budget of a small forested boreal catchment in southeast Norway.
    Larssen T; de Wit HA; Wiker M; Halse K
    Sci Total Environ; 2008 Oct; 404(2-3):290-6. PubMed ID: 18448147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of intensive fishing on the partitioning of mercury and methylmercury in three lakes of Northern Québec.
    Surette C; Lucotte M; Tremblay A
    Sci Total Environ; 2006 Sep; 368(1):248-61. PubMed ID: 16219338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for regulation of monomethyl mercury by nitrate in a seasonally stratified, eutrophic lake.
    Todorova SG; Driscoll CT; Matthews DA; Effler SW; Hines ME; Henry EA
    Environ Sci Technol; 2009 Sep; 43(17):6572-8. PubMed ID: 19764219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California.
    Domagalski JL; Alpers CN; Slotton DG; Suchanek TH; Ayers SM
    Sci Total Environ; 2004 Jul; 327(1-3):215-37. PubMed ID: 15172583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury concentrations of fish, river water, and sediment in the Río Ramis-Lake Titicaca watershed, Peru.
    Gammons CH; Slotton DG; Gerbrandt B; Weight W; Young CA; McNearny RL; Cámac E; Calderón R; Tapia H
    Sci Total Environ; 2006 Sep; 368(2-3):637-48. PubMed ID: 16271381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal analysis of net fluvial methylmercury loading in a dystrophic and a clear water lake.
    Mills RB; Bodek T; Paterson AM; Blais JM; Lean DR
    Sci Total Environ; 2009 Aug; 407(16):4696-702. PubMed ID: 19447474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of mercury speciation in Minnesota rivers and streams.
    Balogh SJ; Swain EB; Nollet YH
    Environ Pollut; 2008 Jul; 154(1):3-11. PubMed ID: 18262318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury.
    Chadwick SP; Babiarz CL; Hurley JP; Armstrong DE
    Sci Total Environ; 2006 Sep; 368(1):177-88. PubMed ID: 16225911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania.
    Ikingura JR; Akagi H; Mujumba J; Messo C
    J Environ Manage; 2006 Oct; 81(2):167-73. PubMed ID: 16782263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury cycling and species mass balances in four North American lakes.
    Qureshi A; MacLeod M; Scheringer M; Hungerbühler K
    Environ Pollut; 2009 Feb; 157(2):452-62. PubMed ID: 19004534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylmercury speciation in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique.
    Clarisse O; Foucher D; Hintelmann H
    Environ Pollut; 2009 Mar; 157(3):987-93. PubMed ID: 19028412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.