These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8784950)

  • 1. Recent progress in understanding chemical shifts.
    de Dios AC; Oldfield E
    Solid State Nucl Magn Reson; 1996 Apr; 6(2):101-25. PubMed ID: 8784950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in solid-state nuclear magnetic resonance of quadrupolar nuclei and applications to biological systems.
    Wu G
    Biochem Cell Biol; 1998; 76(2-3):429-42. PubMed ID: 9923712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR methods for the study of protein structure and dynamics.
    Kay LE
    Biochem Cell Biol; 1997; 75(1):1-15. PubMed ID: 9192068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical shifts in amino acids, peptides, and proteins: from quantum chemistry to drug design.
    Oldfield E
    Annu Rev Phys Chem; 2002; 53():349-78. PubMed ID: 11972012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent developments in solid-state magic-angle spinning, nuclear magnetic resonance of fully and significantly isotopically labelled peptides and proteins.
    Straus SK
    Philos Trans R Soc Lond B Biol Sci; 2004 Jun; 359(1446):997-1008. PubMed ID: 15306412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.
    Beran GJ; Hartman JD; Heit YN
    Acc Chem Res; 2016 Nov; 49(11):2501-2508. PubMed ID: 27754668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved hardware and software for single-crystal NMR spectroscopy.
    Vosegaard T; Hald E; Langer V; Skov HJ; Daugaard P; Bildsoe H; Jakobsen HJ
    J Magn Reson; 1998 Nov; 135(1):126-32. PubMed ID: 9799686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure spectroscopy relationships of carbon-13 nuclear magnetic resonance chemical shifts of steroids.
    Tong J; Liu S; Zhou P; Zhang S; Li SZ
    J Mol Graph Model; 2007 Jul; 26(1):86-92. PubMed ID: 17204441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beginnings and early history of the International Conferences on Magnetic Resonance in Biological Systems: development of the basic ideas in the field.
    Jardetzky O
    J Magn Reson; 2010 Sep; 206(1):2-8. PubMed ID: 20727503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A predictive tool for assessing (13)C NMR chemical shifts of flavonoids.
    Burns DC; Ellis DA; March RE
    Magn Reson Chem; 2007 Oct; 45(10):835-45. PubMed ID: 17729229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of a moleculartweezer host-guest system by a combination of quantum-chemical calculations and solid-state NMR experiments.
    Ochsenfeld C; Koziol F; Brown SP; Schaller T; Seelbach UP; Klärner FG
    Solid State Nucl Magn Reson; 2002; 22(2-3):128-53. PubMed ID: 12469808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical shifts and three-dimensional protein structures.
    Oldfield E
    J Biomol NMR; 1995 Apr; 5(3):217-25. PubMed ID: 7787420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of lycopene nanoparticles combining solid-state and suspended-state NMR spectroscopy.
    Wegmann J; Krucker M; Bachmann S; Fischer G; Zeeb D; Lienau A; Glaser T; Runge F; Lüddecke E; Albert K
    J Agric Food Chem; 2002 Dec; 50(26):7510-4. PubMed ID: 12475262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state NMR fermi contact and dipolar shifts in organometallic complexes and metalloporphyrins.
    Zhang Y; Sun H; Oldfield E
    J Am Chem Soc; 2005 Mar; 127(11):3652-3. PubMed ID: 15771472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins.
    Frank A; Onila I; Möller HM; Exner TE
    Proteins; 2011 Jul; 79(7):2189-202. PubMed ID: 21557322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 51V solid-state magic angle spinning NMR spectroscopy and DFT studies of oxovanadium(V) complexes mimicking the active site of vanadium haloperoxidases.
    Pooransingh N; Pomerantseva E; Ebel M; Jantzen S; Rehder D; Polenova T
    Inorg Chem; 2003 Feb; 42(4):1256-66. PubMed ID: 12588164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Nuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations to Characterize Carvedilol Polymorphs.
    Rezende CA; San Gil RAS; Borré LB; Pires JR; Vaiss VS; Resende JALC; Leitão AA; De Alencastro RB; Leal KZ
    J Pharm Sci; 2016 Sep; 105(9):2648-2655. PubMed ID: 26372719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic asymmetry in multidimensional solid-state NMR correlation spectra.
    Caldarelli S; Emsley L
    J Magn Reson; 1998 Feb; 130(2):233-7. PubMed ID: 9500899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A solid state 13C NMR, crystallographic, and quantum chemical investigation of phenylalanine and tyrosine residues in dipeptides and proteins.
    Mukkamala D; Zhang Y; Oldfield E
    J Am Chem Soc; 2007 Jun; 129(23):7385-92. PubMed ID: 17506558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-state nuclear magnetic resonance investigations on chlorocyclophosphazenes.
    Paasch S; Krüger K; Thomas B
    Solid State Nucl Magn Reson; 1995 Jul; 4(5):267-80. PubMed ID: 7583063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.