BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8785047)

  • 1. Reprogramming Hox expression in the vertebrate hindbrain: influence of paraxial mesoderm and rhombomere transposition.
    Itasaki N; Sharpe J; Morrison A; Krumlauf R
    Neuron; 1996 Mar; 16(3):487-500. PubMed ID: 8785047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions.
    Guthrie S; Muchamore I; Kuroiwa A; Marshall H; Krumlauf R; Lumsden A
    Nature; 1992 Mar; 356(6365):157-9. PubMed ID: 1545869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhombomere-specific analysis reveals the repertoire of genetic cues expressed across the developing hindbrain.
    Chambers D; Wilson LJ; Alfonsi F; Hunter E; Saxena U; Blanc E; Lumsden A
    Neural Dev; 2009 Feb; 4():6. PubMed ID: 19208226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein.
    Kuratani SC; Eichele G
    Development; 1993 Jan; 117(1):105-17. PubMed ID: 7900983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that Hoxa expression domains are evolutionarily transposed in spinal ganglia, and are established by forward spreading in paraxial mesoderm.
    Gaunt SJ; Dean W; Sang H; Burton RD
    Mech Dev; 1999 Apr; 82(1-2):109-18. PubMed ID: 10354475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway.
    Gould A; Itasaki N; Krumlauf R
    Neuron; 1998 Jul; 21(1):39-51. PubMed ID: 9697850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hox gene induction in the neural tube depends on three parameters: competence, signal supply and paralogue group.
    Grapin-Botton A; Bonnin MA; Le Douarin NM
    Development; 1997 Feb; 124(4):849-59. PubMed ID: 9043066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications.
    Grapin-Botton A; Bonnin MA; McNaughton LA; Krumlauf R; Le Douarin NM
    Development; 1995 Sep; 121(9):2707-21. PubMed ID: 7555700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms of pattern formation in the vertebrate hindbrain.
    Nieto MA; Bradley LC; Hunt P; Das Gupta R; Krumlauf R; Wilkinson DG
    Ciba Found Symp; 1992; 165():92-102; discussion 102-7. PubMed ID: 1355422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain.
    Murphy P; Hill RE
    Development; 1991 Jan; 111(1):61-74. PubMed ID: 1673098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A receptor protein tyrosine kinase implicated in the segmental patterning of the hindbrain and mesoderm.
    Nieto MA; Gilardi-Hebenstreit P; Charnay P; Wilkinson DG
    Development; 1992 Dec; 116(4):1137-50. PubMed ID: 1295734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hox genes and segmentation of the vertebrate hindbrain.
    Tümpel S; Wiedemann LM; Krumlauf R
    Curr Top Dev Biol; 2009; 88():103-37. PubMed ID: 19651303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatic motoneurone specification in the hindbrain: the influence of somite-derived signals, retinoic acid and Hoxa3.
    Guidato S; Prin F; Guthrie S
    Development; 2003 Jul; 130(13):2981-96. PubMed ID: 12756180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid.
    Maves L; Kimmel CB
    Dev Biol; 2005 Sep; 285(2):593-605. PubMed ID: 16102743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain.
    Carpenter EM; Goddard JM; Chisaka O; Manley NR; Capecchi MR
    Development; 1993 Aug; 118(4):1063-75. PubMed ID: 7903632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish.
    Hernandez RE; Rikhof HA; Bachmann R; Moens CB
    Development; 2004 Sep; 131(18):4511-20. PubMed ID: 15342476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity of axial identity among somites: cranial somites can generate vertebrae without expressing Hox genes appropriate to the trunk.
    Kant R; Goldstein RS
    Dev Biol; 1999 Dec; 216(2):507-20. PubMed ID: 10642789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Genetic control of rhombencephalon development by Hox genes studied in bird embryo by the quail-chick chimera method].
    Le Douarin NM; Grapin-Botton A
    C R Seances Soc Biol Fil; 1997; 191(1):29-42. PubMed ID: 9181126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic analysis of midbrain and individual hindbrain rhombomeres in the chick embryo.
    Wilson L; Chambers D
    Sci Data; 2014; 1():140014. PubMed ID: 25977772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity.
    Marshall H; Nonchev S; Sham MH; Muchamore I; Lumsden A; Krumlauf R
    Nature; 1992 Dec 24-31; 360(6406):737-41. PubMed ID: 1361214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.