These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue. Majumder R; Pandit R; Panfilov AV Am J Physiol Heart Circ Physiol; 2014 Oct; 307(7):H1024-35. PubMed ID: 25108011 [TBL] [Abstract][Full Text] [Related]
5. Comparison of macroscopic models of excitation and force propagation in the heart. Sachse FB; Blümcke LG; Mohr M; Glänzel K; Häfner J; Riedel C; Seemann G; Skipa O; Werner CD; Dössel O Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():217-20. PubMed ID: 12451821 [TBL] [Abstract][Full Text] [Related]
6. Fast lidocaine block of cardiac and skeletal muscle sodium channels: one site with two routes of access. Zamponi GW; Doyle DD; French RJ Biophys J; 1993 Jul; 65(1):80-90. PubMed ID: 8396459 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of cardiac cell excitation with premature monophasic and biphasic field stimuli: a model study. Fishler MG; Sobie EA; Thakor NV; Tung L Biophys J; 1996 Mar; 70(3):1347-62. PubMed ID: 8785290 [TBL] [Abstract][Full Text] [Related]
8. An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Cherubini C; Filippi S; Nardinocchi P; Teresi L Prog Biophys Mol Biol; 2008; 97(2-3):562-73. PubMed ID: 18353430 [TBL] [Abstract][Full Text] [Related]
9. Control of rotating waves in cardiac muscle: analysis of the effect of an electric field. Pumir A; Plaza F; Krinsky VI Proc Biol Sci; 1994 Aug; 257(1349):129-34. PubMed ID: 7972160 [TBL] [Abstract][Full Text] [Related]
10. Electrical turbulence as a result of the critical curvature for propagation in cardiac tissue. Cabo C; Pertsov AM; Davidenko JM; Jalife J Chaos; 1998 Mar; 8(1):116-126. PubMed ID: 12779715 [TBL] [Abstract][Full Text] [Related]
11. Sustained vortex-like waves in normal isolated ventricular muscle. Davidenko JM; Kent PF; Chialvo DR; Michaels DC; Jalife J Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8785-9. PubMed ID: 2247448 [TBL] [Abstract][Full Text] [Related]
12. Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation. Starmer CF; Biktashev VN; Romashko DN; Stepanov MR; Makarova ON; Krinsky VI Biophys J; 1993 Nov; 65(5):1775-87. PubMed ID: 8298011 [TBL] [Abstract][Full Text] [Related]
13. [Biophysical models of the heart electrical activity]. Baum OV; Voloshin VI; Popov LA Biofizika; 2006; 51(6):1069-86. PubMed ID: 17175918 [TBL] [Abstract][Full Text] [Related]
14. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Kléber AG; Rudy Y Physiol Rev; 2004 Apr; 84(2):431-88. PubMed ID: 15044680 [TBL] [Abstract][Full Text] [Related]
15. Critical fronts in initiation of excitation waves. Idris I; Biktashev VN Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021906. PubMed ID: 17930064 [TBL] [Abstract][Full Text] [Related]
16. A biophysical model for defibrillation of cardiac tissue. Keener JP; Panfilov AV Biophys J; 1996 Sep; 71(3):1335-45. PubMed ID: 8874007 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of anode break stimulation in the heart. Ranjan R; Chiamvimonvat N; Thakor NV; Tomaselli GF; Marban E Biophys J; 1998 Apr; 74(4):1850-63. PubMed ID: 9545047 [TBL] [Abstract][Full Text] [Related]
18. Identification of a cardiac sodium channel insensitive to synthetic modulators. Mevissen M; Denac H; Schaad A; Portier CJ; Scholtysik G J Cardiovasc Pharmacol Ther; 2001 Apr; 6(2):201-12. PubMed ID: 11509927 [TBL] [Abstract][Full Text] [Related]
19. Control of cardiac alternans in an electromechanical model of cardiac tissue. Hazim A; Belhamadia Y; Dubljevic S Comput Biol Med; 2015 Aug; 63():108-17. PubMed ID: 26069933 [TBL] [Abstract][Full Text] [Related]