BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

605 related articles for article (PubMed ID: 8785283)

  • 1. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer.
    Antollini SS; Soto MA; Bonini de Romanelli I; GutiƩrrez-Merino C; Sotomayor P; Barrantes FJ
    Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laurdan studies of membrane lipid-nicotinic acetylcholine receptor protein interactions.
    Antollini SS; Barrantes FJ
    Methods Mol Biol; 2007; 400():531-42. PubMed ID: 17951758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane.
    Antollini SS; Barrantes FJ
    Biochemistry; 1998 Nov; 37(47):16653-62. PubMed ID: 9843433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of organochlorine insecticides on nicotinic acetylcholine receptor-rich membranes.
    Massol RH; Antollini SS; Barrantes FJ
    Neuropharmacology; 2000 Apr; 39(6):1095-106. PubMed ID: 10727720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinic acetylcholine receptor channels are influenced by the physical state of their membrane environment.
    Zanello LP; Aztiria E; Antollini S; Barrantes FJ
    Biophys J; 1996 May; 70(5):2155-64. PubMed ID: 9172739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid matters: nicotinic acetylcholine receptor-lipid interactions (Review).
    Barrantes FJ
    Mol Membr Biol; 2002; 19(4):277-84. PubMed ID: 12512774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingomyelin composition and physical asymmetries in native acetylcholine receptor-rich membranes.
    Bonini IC; Antollini SS; GutiƩrrez-Merino C; Barrantes FJ
    Eur Biophys J; 2002 Oct; 31(6):417-27. PubMed ID: 12355251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: a time-resolved fluorescence study.
    Viard M; Gallay J; Vincent M; Paternostre M
    Biophys J; 2001 Jan; 80(1):347-59. PubMed ID: 11159407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring the organization and dynamics of bovine hippocampal membranes utilizing Laurdan generalized polarization.
    Mukherjee S; Chattopadhyay A
    Biochim Biophys Acta; 2005 Aug; 1714(1):43-55. PubMed ID: 16042963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence.
    Bagatolli LA; Gratton E; Fidelio GD
    Biophys J; 1998 Jul; 75(1):331-41. PubMed ID: 9649390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence.
    Parasassi T; De Stasio G; Ravagnan G; Rusch RM; Gratton E
    Biophys J; 1991 Jul; 60(1):179-89. PubMed ID: 1883937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique effects of different fatty acid species on the physical properties of the torpedo acetylcholine receptor membrane.
    Antollini SS; Barrantes FJ
    J Biol Chem; 2002 Jan; 277(2):1249-54. PubMed ID: 11682474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases.
    Krasnowska EK; Gratton E; Parasassi T
    Biophys J; 1998 Apr; 74(4):1984-93. PubMed ID: 9545057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes.
    Parasassi T; Gratton E; Yu WM; Wilson P; Levi M
    Biophys J; 1997 Jun; 72(6):2413-29. PubMed ID: 9168019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe.
    Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E
    Biophys J; 1994 Mar; 66(3 Pt 1):763-8. PubMed ID: 8011908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexistence of domains with distinct order and polarity in fluid bacterial membranes.
    Vanounou S; Pines D; Pines E; Parola AH; Fishov I
    Photochem Photobiol; 2002 Jul; 76(1):1-11. PubMed ID: 12126299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laurdan solvatochromism: solvent dielectric relaxation and intramolecular excited-state reaction.
    Viard M; Gallay J; Vincent M; Meyer O; Robert B; Paternostre M
    Biophys J; 1997 Oct; 73(4):2221-34. PubMed ID: 9336218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence.
    Parasassi T; De Stasio G; d'Ubaldo A; Gratton E
    Biophys J; 1990 Jun; 57(6):1179-86. PubMed ID: 2393703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties.
    Bagatolli LA; Parasassi T; Fidelio GD; Gratton E
    Photochem Photobiol; 1999 Oct; 70(4):557-64. PubMed ID: 10546552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence studies of the nicotinic acetylcholine receptor in its membrane environment.
    Barrantes FJ; Antollini S; Massol R
    Biosci Rep; 1999 Oct; 19(5):335-44. PubMed ID: 10763801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.